Spaces:
Running
on
Zero
Running
on
Zero
try to run on CPU
Browse files- app.py +9 -9
- utils/florence.py +2 -2
- utils/sam.py +4 -4
app.py
CHANGED
@@ -10,22 +10,22 @@ from utils.florence import load_florence_model, run_florence_inference, \
|
|
10 |
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
|
11 |
from utils.sam import load_sam_image_model, run_sam_inference
|
12 |
|
13 |
-
DEVICE = torch.device("cuda")
|
14 |
-
|
15 |
|
16 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
17 |
-
if torch.cuda.get_device_properties(0).major >= 8:
|
18 |
-
|
19 |
-
|
20 |
|
21 |
|
22 |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
23 |
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
|
24 |
|
25 |
|
26 |
-
@spaces.GPU(duration=20)
|
27 |
-
@torch.inference_mode()
|
28 |
-
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
29 |
def process_image(image_input, text_input) -> Optional[Image.Image]:
|
30 |
if not image_input:
|
31 |
gr.Info("Please upload an image.")
|
|
|
10 |
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
|
11 |
from utils.sam import load_sam_image_model, run_sam_inference
|
12 |
|
13 |
+
# DEVICE = torch.device("cuda")
|
14 |
+
DEVICE = torch.device("cpu")
|
15 |
|
16 |
+
# torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
17 |
+
# if torch.cuda.get_device_properties(0).major >= 8:
|
18 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
19 |
+
# torch.backends.cudnn.allow_tf32 = True
|
20 |
|
21 |
|
22 |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
23 |
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
|
24 |
|
25 |
|
26 |
+
# @spaces.GPU(duration=20)
|
27 |
+
# @torch.inference_mode()
|
28 |
+
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
29 |
def process_image(image_input, text_input) -> Optional[Image.Image]:
|
30 |
if not image_input:
|
31 |
gr.Info("Please upload an image.")
|
utils/florence.py
CHANGED
@@ -7,8 +7,8 @@ from PIL import Image
|
|
7 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
8 |
from transformers.dynamic_module_utils import get_imports
|
9 |
|
10 |
-
|
11 |
-
FLORENCE_CHECKPOINT = "microsoft/Florence-2-large"
|
12 |
FLORENCE_OBJECT_DETECTION_TASK = '<OD>'
|
13 |
FLORENCE_DETAILED_CAPTION_TASK = '<MORE_DETAILED_CAPTION>'
|
14 |
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK = '<CAPTION_TO_PHRASE_GROUNDING>'
|
|
|
7 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
8 |
from transformers.dynamic_module_utils import get_imports
|
9 |
|
10 |
+
FLORENCE_CHECKPOINT = "microsoft/Florence-2-base"
|
11 |
+
# FLORENCE_CHECKPOINT = "microsoft/Florence-2-large"
|
12 |
FLORENCE_OBJECT_DETECTION_TASK = '<OD>'
|
13 |
FLORENCE_DETAILED_CAPTION_TASK = '<MORE_DETAILED_CAPTION>'
|
14 |
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK = '<CAPTION_TO_PHRASE_GROUNDING>'
|
utils/sam.py
CHANGED
@@ -7,10 +7,10 @@ from PIL import Image
|
|
7 |
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
8 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
SAM_CHECKPOINT = "checkpoints/sam2_hiera_large.pt"
|
13 |
-
SAM_CONFIG = "sam2_hiera_l.yaml"
|
14 |
|
15 |
|
16 |
def load_sam_image_model(
|
|
|
7 |
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
8 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
9 |
|
10 |
+
SAM_CHECKPOINT = "checkpoints/sam2_hiera_small.pt"
|
11 |
+
SAM_CONFIG = "sam2_hiera_s.yaml"
|
12 |
+
# SAM_CHECKPOINT = "checkpoints/sam2_hiera_large.pt"
|
13 |
+
# SAM_CONFIG = "sam2_hiera_l.yaml"
|
14 |
|
15 |
|
16 |
def load_sam_image_model(
|