Spaces:
Running
on
Zero
Running
on
Zero
open vocabulary detection with Florence2 + masks with SAM2
Browse files- app.py +107 -57
- utils/florence.py +3 -0
- utils/modes.py +7 -0
- utils/sam.py +22 -0
app.py
CHANGED
@@ -1,15 +1,16 @@
|
|
1 |
from typing import Tuple, Optional
|
2 |
|
3 |
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
import supervision as sv
|
6 |
import torch
|
7 |
from PIL import Image
|
8 |
|
9 |
from utils.florence import load_florence_model, run_florence_inference, \
|
10 |
FLORENCE_DETAILED_CAPTION_TASK, \
|
11 |
-
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK
|
12 |
-
from utils.
|
|
|
|
|
13 |
|
14 |
MARKDOWN = """
|
15 |
# Florence2 + SAM2 🔥
|
@@ -21,94 +22,122 @@ into masks.
|
|
21 |
"""
|
22 |
|
23 |
EXAMPLES = [
|
24 |
-
"https://media.roboflow.com/notebooks/examples/dog-2.jpeg",
|
25 |
-
"https://media.roboflow.com/notebooks/examples/dog-
|
26 |
-
"https://media.roboflow.com/notebooks/examples/dog-
|
|
|
|
|
27 |
]
|
28 |
|
29 |
DEVICE = torch.device("cuda")
|
30 |
-
|
31 |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
32 |
SAM_MODEL = load_sam_model(device=DEVICE)
|
33 |
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
34 |
LABEL_ANNOTATOR = sv.LabelAnnotator(
|
35 |
color_lookup=sv.ColorLookup.INDEX,
|
36 |
text_position=sv.Position.CENTER_OF_MASS,
|
37 |
-
text_color=sv.Color.
|
38 |
border_radius=5
|
39 |
)
|
40 |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
41 |
|
42 |
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
_, result = run_florence_inference(
|
50 |
-
model=FLORENCE_MODEL,
|
51 |
-
processor=FLORENCE_PROCESSOR,
|
52 |
-
device=DEVICE,
|
53 |
-
image=image_input,
|
54 |
-
task=FLORENCE_DETAILED_CAPTION_TASK
|
55 |
-
)
|
56 |
-
caption = result[FLORENCE_DETAILED_CAPTION_TASK]
|
57 |
-
_, result = run_florence_inference(
|
58 |
-
model=FLORENCE_MODEL,
|
59 |
-
processor=FLORENCE_PROCESSOR,
|
60 |
-
device=DEVICE,
|
61 |
-
image=image_input,
|
62 |
-
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
|
63 |
-
text=caption
|
64 |
-
)
|
65 |
-
detections = sv.Detections.from_lmm(
|
66 |
-
lmm=sv.LMM.FLORENCE_2,
|
67 |
-
result=result,
|
68 |
-
resolution_wh=image_input.size
|
69 |
-
)
|
70 |
-
image = np.array(image_input.convert("RGB"))
|
71 |
-
SAM_MODEL.set_image(image)
|
72 |
-
mask, score, _ = SAM_MODEL.predict(box=detections.xyxy, multimask_output=False)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
77 |
|
78 |
-
detections.mask = mask.astype(bool)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
|
87 |
with gr.Blocks() as demo:
|
88 |
gr.Markdown(MARKDOWN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
with gr.Row():
|
90 |
with gr.Column():
|
91 |
image_input_component = gr.Image(
|
92 |
type='pil', label='Upload image')
|
|
|
|
|
93 |
submit_button_component = gr.Button(value='Submit', variant='primary')
|
94 |
-
|
95 |
with gr.Column():
|
96 |
image_output_component = gr.Image(type='pil', label='Image output')
|
97 |
-
text_output_component = gr.Textbox(label='Caption output')
|
98 |
|
99 |
-
submit_button_component.click(
|
100 |
-
fn=process,
|
101 |
-
inputs=[image_input_component],
|
102 |
-
outputs=[
|
103 |
-
image_output_component,
|
104 |
-
text_output_component
|
105 |
-
]
|
106 |
-
)
|
107 |
with gr.Row():
|
108 |
gr.Examples(
|
109 |
fn=process,
|
110 |
examples=EXAMPLES,
|
111 |
-
inputs=[
|
|
|
|
|
|
|
|
|
112 |
outputs=[
|
113 |
image_output_component,
|
114 |
text_output_component
|
@@ -116,4 +145,25 @@ with gr.Blocks() as demo:
|
|
116 |
run_on_click=True
|
117 |
)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
demo.launch(debug=False, show_error=True, max_threads=1)
|
|
|
1 |
from typing import Tuple, Optional
|
2 |
|
3 |
import gradio as gr
|
|
|
4 |
import supervision as sv
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
|
8 |
from utils.florence import load_florence_model, run_florence_inference, \
|
9 |
FLORENCE_DETAILED_CAPTION_TASK, \
|
10 |
+
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
|
11 |
+
from utils.modes import INFERENCE_MODES, OPEN_VOCABULARY_DETECTION, \
|
12 |
+
CAPTION_GROUNDING_MASKS
|
13 |
+
from utils.sam import load_sam_model, run_sam_inference
|
14 |
|
15 |
MARKDOWN = """
|
16 |
# Florence2 + SAM2 🔥
|
|
|
22 |
"""
|
23 |
|
24 |
EXAMPLES = [
|
25 |
+
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'straw'],
|
26 |
+
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'napkin'],
|
27 |
+
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 'tail'],
|
28 |
+
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
|
29 |
+
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
|
30 |
]
|
31 |
|
32 |
DEVICE = torch.device("cuda")
|
|
|
33 |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
34 |
SAM_MODEL = load_sam_model(device=DEVICE)
|
35 |
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
36 |
LABEL_ANNOTATOR = sv.LabelAnnotator(
|
37 |
color_lookup=sv.ColorLookup.INDEX,
|
38 |
text_position=sv.Position.CENTER_OF_MASS,
|
39 |
+
text_color=sv.Color.from_hex("#FFFFFF"),
|
40 |
border_radius=5
|
41 |
)
|
42 |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
43 |
|
44 |
|
45 |
+
def annotate_image(image, detections):
|
46 |
+
output_image = image.copy()
|
47 |
+
output_image = MASK_ANNOTATOR.annotate(output_image, detections)
|
48 |
+
output_image = BOX_ANNOTATOR.annotate(output_image, detections)
|
49 |
+
output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
|
50 |
+
return output_image
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
def on_mode_dropdown_change(text):
|
54 |
+
return [
|
55 |
+
gr.Textbox(visible=text == OPEN_VOCABULARY_DETECTION),
|
56 |
+
gr.Textbox(visible=text == CAPTION_GROUNDING_MASKS),
|
57 |
+
]
|
58 |
|
|
|
59 |
|
60 |
+
def process(
|
61 |
+
mode_dropdown, image_input, text_input
|
62 |
+
) -> Tuple[Optional[Image.Image], Optional[str]]:
|
63 |
+
if not image_input:
|
64 |
+
return None, None
|
65 |
+
|
66 |
+
if mode_dropdown == OPEN_VOCABULARY_DETECTION:
|
67 |
+
if not text_input:
|
68 |
+
return None, None
|
69 |
+
|
70 |
+
_, result = run_florence_inference(
|
71 |
+
model=FLORENCE_MODEL,
|
72 |
+
processor=FLORENCE_PROCESSOR,
|
73 |
+
device=DEVICE,
|
74 |
+
image=image_input,
|
75 |
+
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
|
76 |
+
text=text_input
|
77 |
+
)
|
78 |
+
detections = sv.Detections.from_lmm(
|
79 |
+
lmm=sv.LMM.FLORENCE_2,
|
80 |
+
result=result,
|
81 |
+
resolution_wh=image_input.size
|
82 |
+
)
|
83 |
+
detections = run_sam_inference(SAM_MODEL, image_input, detections)
|
84 |
+
return annotate_image(image_input, detections), None
|
85 |
+
|
86 |
+
if mode_dropdown == CAPTION_GROUNDING_MASKS:
|
87 |
+
_, result = run_florence_inference(
|
88 |
+
model=FLORENCE_MODEL,
|
89 |
+
processor=FLORENCE_PROCESSOR,
|
90 |
+
device=DEVICE,
|
91 |
+
image=image_input,
|
92 |
+
task=FLORENCE_DETAILED_CAPTION_TASK
|
93 |
+
)
|
94 |
+
caption = result[FLORENCE_DETAILED_CAPTION_TASK]
|
95 |
+
_, result = run_florence_inference(
|
96 |
+
model=FLORENCE_MODEL,
|
97 |
+
processor=FLORENCE_PROCESSOR,
|
98 |
+
device=DEVICE,
|
99 |
+
image=image_input,
|
100 |
+
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
|
101 |
+
text=caption
|
102 |
+
)
|
103 |
+
detections = sv.Detections.from_lmm(
|
104 |
+
lmm=sv.LMM.FLORENCE_2,
|
105 |
+
result=result,
|
106 |
+
resolution_wh=image_input.size
|
107 |
+
)
|
108 |
+
detections = run_sam_inference(SAM_MODEL, image_input, detections)
|
109 |
+
return annotate_image(image_input, detections), caption
|
110 |
|
111 |
|
112 |
with gr.Blocks() as demo:
|
113 |
gr.Markdown(MARKDOWN)
|
114 |
+
mode_dropdown_component = gr.Dropdown(
|
115 |
+
choices=INFERENCE_MODES,
|
116 |
+
value=INFERENCE_MODES[0],
|
117 |
+
label="Mode",
|
118 |
+
info="Select a mode to use.",
|
119 |
+
interactive=True
|
120 |
+
)
|
121 |
with gr.Row():
|
122 |
with gr.Column():
|
123 |
image_input_component = gr.Image(
|
124 |
type='pil', label='Upload image')
|
125 |
+
text_input_component = gr.Textbox(
|
126 |
+
label='Text prompt')
|
127 |
submit_button_component = gr.Button(value='Submit', variant='primary')
|
|
|
128 |
with gr.Column():
|
129 |
image_output_component = gr.Image(type='pil', label='Image output')
|
130 |
+
text_output_component = gr.Textbox(label='Caption output', visible=False)
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
with gr.Row():
|
133 |
gr.Examples(
|
134 |
fn=process,
|
135 |
examples=EXAMPLES,
|
136 |
+
inputs=[
|
137 |
+
mode_dropdown_component,
|
138 |
+
image_input_component,
|
139 |
+
text_input_component
|
140 |
+
],
|
141 |
outputs=[
|
142 |
image_output_component,
|
143 |
text_output_component
|
|
|
145 |
run_on_click=True
|
146 |
)
|
147 |
|
148 |
+
submit_button_component.click(
|
149 |
+
fn=process,
|
150 |
+
inputs=[
|
151 |
+
mode_dropdown_component,
|
152 |
+
image_input_component,
|
153 |
+
text_input_component
|
154 |
+
],
|
155 |
+
outputs=[
|
156 |
+
image_output_component,
|
157 |
+
text_output_component
|
158 |
+
]
|
159 |
+
)
|
160 |
+
mode_dropdown_component.change(
|
161 |
+
on_mode_dropdown_change,
|
162 |
+
inputs=[mode_dropdown_component],
|
163 |
+
outputs=[
|
164 |
+
text_input_component,
|
165 |
+
text_output_component
|
166 |
+
]
|
167 |
+
)
|
168 |
+
|
169 |
demo.launch(debug=False, show_error=True, max_threads=1)
|
utils/florence.py
CHANGED
@@ -8,8 +8,11 @@ from transformers import AutoModelForCausalLM, AutoProcessor
|
|
8 |
from transformers.dynamic_module_utils import get_imports
|
9 |
|
10 |
FLORENCE_CHECKPOINT = "microsoft/Florence-2-large"
|
|
|
11 |
FLORENCE_DETAILED_CAPTION_TASK = '<MORE_DETAILED_CAPTION>'
|
12 |
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK = '<CAPTION_TO_PHRASE_GROUNDING>'
|
|
|
|
|
13 |
|
14 |
|
15 |
def fixed_get_imports(filename: Union[str, os.PathLike]) -> list[str]:
|
|
|
8 |
from transformers.dynamic_module_utils import get_imports
|
9 |
|
10 |
FLORENCE_CHECKPOINT = "microsoft/Florence-2-large"
|
11 |
+
FLORENCE_OBJECT_DETECTION_TASK = '<OD>'
|
12 |
FLORENCE_DETAILED_CAPTION_TASK = '<MORE_DETAILED_CAPTION>'
|
13 |
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK = '<CAPTION_TO_PHRASE_GROUNDING>'
|
14 |
+
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK = '<OPEN_VOCABULARY_DETECTION>'
|
15 |
+
FLORENCE_DENSE_REGION_CAPTION_TASK = '<DENSE_REGION_CAPTION>'
|
16 |
|
17 |
|
18 |
def fixed_get_imports(filename: Union[str, os.PathLike]) -> list[str]:
|
utils/modes.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OPEN_VOCABULARY_DETECTION = "open vocabulary detection + masks"
|
2 |
+
CAPTION_GROUNDING_MASKS = "caption + grounding + masks"
|
3 |
+
|
4 |
+
INFERENCE_MODES = [
|
5 |
+
OPEN_VOCABULARY_DETECTION,
|
6 |
+
CAPTION_GROUNDING_MASKS
|
7 |
+
]
|
utils/sam.py
CHANGED
@@ -1,4 +1,9 @@
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
2 |
from sam2.build_sam import build_sam2
|
3 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
4 |
|
@@ -13,3 +18,20 @@ def load_sam_model(
|
|
13 |
) -> SAM2ImagePredictor:
|
14 |
model = build_sam2(config, checkpoint, device=device)
|
15 |
return SAM2ImagePredictor(sam_model=model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import supervision as sv
|
5 |
import torch
|
6 |
+
from PIL import Image
|
7 |
from sam2.build_sam import build_sam2
|
8 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
9 |
|
|
|
18 |
) -> SAM2ImagePredictor:
|
19 |
model = build_sam2(config, checkpoint, device=device)
|
20 |
return SAM2ImagePredictor(sam_model=model)
|
21 |
+
|
22 |
+
|
23 |
+
def run_sam_inference(
|
24 |
+
model: Any,
|
25 |
+
image: Image,
|
26 |
+
detections: sv.Detections
|
27 |
+
) -> sv.Detections:
|
28 |
+
image = np.array(image.convert("RGB"))
|
29 |
+
model.set_image(image)
|
30 |
+
mask, score, _ = model.predict(box=detections.xyxy, multimask_output=False)
|
31 |
+
|
32 |
+
# dirty fix; remove this later
|
33 |
+
if len(mask.shape) == 4:
|
34 |
+
mask = np.squeeze(mask)
|
35 |
+
|
36 |
+
detections.mask = mask.astype(bool)
|
37 |
+
return detections
|