File size: 12,467 Bytes
613af8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#ifndef CANN_ACL_TENSOR_H
#define CANN_ACL_TENSOR_H

#include <algorithm>
#include <cstring>

#include <aclnn/aclnn_base.h>
#include "common.h"

/**
 * @brief	Maps a ggml_type to its corresponding aclDataType.
 *
 * @details	This function takes a ggml_type as input and returns the corresponding
 *			aclDataType. It supports mapping for various ggml_types. If the input type
 *			does not match any of the predefined ggml_types, the function returns
 *          ACL_DT_UNDEFINED.
 *
 * @param	type    The ggml_type to be mapped.
 * @return	The corresponding aclDataType. If the input type is not recognized,
 *			ACL_DT_UNDEFINED is returned.
 */
aclDataType ggml_cann_type_mapping(ggml_type type);

/**
 * @brief   Creates an ACL tensor from a ggml_tensor with optional shape.
 *
 * @details This function creates an ACL tensor based on the properties of the
 *          provided ggml_tensor. It supports customer shape by adjusting dimensions
 *          and strides accordingly. If customer shape is applied, additional
 *          dimensions and strides are calculated based on the provided parameters.
 *
 * @param   tensor      Pointer to the ggml_tensor to be converted to ACL tensor.
 * @param   ne          Pointer to an array containing dimensions. Defaults to nullptr
 *                      if no customer shape is applied.
 * @param   nb          Pointer to an array containing strides. Defaults to nullptr
 *                      if no customer shape is applied.
 * @param   dims        Number of dimensions in the tensor. Defaults to 0 if no customer
 *                      shape is applied.
 * @param   format      ACL tensor format. Defaults to ACL_FORMAT_ND.
 * @param   offset      Offset in bytes for the ACL tensor data. Defaults to 0.
 * @return  Pointer to the created ACL tensor.
 */
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = nullptr,
                             size_t* nb = nullptr, int64_t dims = 0,
                             aclFormat format = ACL_FORMAT_ND,
                             size_t offset = 0);

/**
 * @brief   Template for creating an ACL tensor from provided parameters. typename TYPE
 *          should be size_t or float.
 *
 * @details This function creates an ACL tensor using the provided data pointer,
 *          data type, dimensions, strides, format, offset, and additional parameters.
 *          It calculates necessary dimensions and strides based on the provided ne and nb
 *          arrays, adjusting them for the ACL tensor creation. The ACL storage length
 *          is also calculated based on the provided dimensions and strides.
 *
 * @param   data_ptr    Pointer to the data buffer for the ACL tensor.
 * @param   dtype       ACL data type of the tensor.
 * @param   type_size   Size of each element in the tensor data buffer.
 * @param   ne          Pointer to an array containing tensor dimensions.
 * @param   nb          Pointer to an array containing tensor strides.
 * @param   dims        Number of dimensions of the tensor.
 * @param   format      ACL tensor format. Defaults to ACL_FORMAT_ND.
 * @param   offset      Offset in bytes for the ACL tensor data. Defaults to 0.
 * @return  Pointer to the created ACL tensor.
 */
template<typename TYPE>
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
                                   TYPE type_size, int64_t* ne, TYPE* nb,
                                   int64_t dims,
                                   aclFormat format = ACL_FORMAT_ND,
                                   size_t offset = 0) {
    int64_t tmp_ne[GGML_MAX_DIMS * 2];
    int64_t tmp_stride[GGML_MAX_DIMS * 2];

    memcpy(tmp_ne, ne, dims * sizeof(int64_t));
    for (int i = 0; i < dims; i++) {
        tmp_stride[i] = nb[i] / type_size;
    }

    std::reverse(tmp_ne, tmp_ne + dims);
    std::reverse(tmp_stride, tmp_stride + dims);

    int64_t acl_storage_len = 0;
    for (int i = 0; i < dims; i++) {
        acl_storage_len += (ne[i] - 1) * nb[i];
    }

    aclTensor* acl_tensor =
        aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
                        format, &acl_storage_len, 1, data_ptr);

    return acl_tensor;
}

/**
 * @brief   Checks if tensors require broadcasting based on their shapes.
 *
 * @details This function determines if two ggml_tensors need to be broadcasted for
 *          element-wise operations. Broadcasting is necessary if the shapes of the
 *          tensors are not identical and no dimension in either tensor equals 1.
 *
 * @param   t0      Pointer to the first ggml_tensor.
 * @param   t1      Pointer to the second ggml_tensor.
 * @return  True if broadcasting is needed, False otherwise.
 *
 * @remarks This function iterates over the dimensions of t0 and t1. It checks if each
 *          dimension in t1 differs from t0's corresponding dimension and is not equal
 *          to 1. If such a dimension is found, broadcasting is required to align t1
 *          with t0 for element-wise operations.
 */
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);

/**
 * @brief   Computes broadcast shapes and strides for two ggml_tensors.
 *
 * @details This function calculates the broadcast shapes and strides for two ggml_tensors,
 *          following the broadcasting rules similar to numpy. It adjusts dimensions and
 *          strides to ensure compatibility for element-wise operations where one tensor
 *          can be broadcasted to match the shape of another tensor.
 *
 * @param   src0                Pointer to the first ggml_tensor.
 * @param   src1                Pointer to the second ggml_tensor.
 * @param   bcast_ne_src0       Output array to store broadcasted dimensions for src0.
 * @param   bcast_ne_src1       Output array to store broadcasted dimensions for src1.
 * @param   bcast_nb_src0       Output array to store broadcasted strides for src0.
 * @param   bcast_nb_src1       Output array to store broadcasted strides for src1.
 * @return  Number of dimensions in the broadcasted shape.
 *
 * @pre     ggml_can_repeat(src1, src0) must return true, indicating src1 can be broadcasted
 *          to match src0.
 *
 * @remarks This function iterates over the dimensions of src0 and src1, calculating the
 *          necessary broadcast dimensions and strides. If a dimension requires broadcasting
 *          (i.e., its size in src1 is smaller than in src0), an additional dimension is
 *          added with size calculated to match src0's dimension. This adjustment ensures
 *          that src1 can be element-wise broadcasted to src0's shape.
 *
 *  How it works:
 *
 *  if dim0 has padding.
 *  a -> (2, 2) padding = 2
 *   a: [[1, 2, *, *]
 *       [2, 3, *, *]]
 *  nb = (8, 4, 2)
 *
 *  if a should bcast with b -> (2, 4)
 *  b' -> (2, 2, 2)
 *  b : [[1, 2, 3, 4, *, *]
 *       [5, 6, 7, 8, *, *]]
 *  nb = (12, 6, 1)
 *
 *  after bcast:
 *  a' -> (2, 1, 2)
 *  a': [[[1, 2], *, *]
 *       [[2, 3], *, *]]
 *  nb = (8, 4, 2, 1)
 *
 *  b' : [[[1, 2], [3, 4], *, *]
 *        [[5, 6], [7, 8], *, *]]
 *  nb = (12, 6, 2, 1)
 *  \endcode
 *
 *  dim1 in a inserted dim, should add nb for dim1,
 *  and all other nb moves to next in order.
 */
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1,
                        int64_t* bcast_ne_src0, int64_t* bcast_ne_src1,
                        size_t* bcast_nb_src0, size_t* bcast_nb_src1);

// Bcast macro to avoid duplicate code.
#define BCAST_SHAPE(src0, src1)                                              \
    int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2];                            \
    int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2];                            \
    size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2];                             \
    size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2];                             \
    int64_t bcast_dims = ggml_cann_get_bcast_shape(                          \
        src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, bcast_##src0##_nb, \
        bcast_##src1##_nb);

#define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims

/**
 * @brief Calculates broadcast shapes for matrix multiplication.
 *
 * @details This function computes the broadcast shapes required for matrix multiplication
 *          based on the input, weight, and destination tensor shapes. It ensures that the
 *          dimensions of weight tensors are expanded appropriately to satisfy matrix
 *          multiplication broadcast rules.
 *
 * @param input_ne      Array containing the dimensions of the input tensor.
 * @param weight_ne     Array containing the dimensions of the weight tensor.
 * @param dst_ne        Array containing the dimensions of the destination tensor.
 * @param input_nb      Array containing the strides of the input tensor.
 * @param weight_nb     Array containing the strides of the weight tensor.
 * @param dst_nb        Array containing the strides of the destination tensor.
 * @param bcast_input_ne    Output array for broadcasted input tensor dimensions.
 * @param bcast_weight_ne   Output array for broadcasted weight tensor dimensions.
 * @param bcast_dst_ne      Output array for broadcasted destination tensor dimensions.
 * @param bcast_input_nb    Output array for broadcasted input tensor strides.
 * @param bcast_weight_nb   Output array for broadcasted weight tensor strides.
 * @param bcast_dst_nb      Output array for broadcasted destination tensor strides.
 * @return The number of dimensions in the broadcasted tensors.
 *
 * @remarks This function iterates over the tensor dimensions and calculates the broadcast
 *          shapes needed for matrix multiplication. It ensures that dimensions where
 *          weight tensor requires expansion are appropriately handled to conform with
 *          broadcasting rules.
 * @note compare with ggml_cann_get_bcast_shape, mul_mat broadcast need add this new dim
 *       before cast dim.
 * @sa ggml_cann_get_bcast_shape
 */
int64_t ggml_cann_get_mulmat_bcast_shape(
    const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
    const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
    int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
    size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb);

// Bcast macro to avoid duplicate code.
#define BCAST_MUL_MAT_SHAPE(input, weight, dst)                         \
    int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2];                      \
    int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2];                     \
    int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2];                        \
    size_t bcast_##input##_nb[GGML_MAX_DIMS * 2];                       \
    size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2];                      \
    size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2];                         \
    int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape(              \
        input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, \
        bcast_##input##_ne, bcast_##weight##_ne, bcast_##dst##_ne,      \
        bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);

#define BCAST_MUL_MAT_PARAM(tensor) \
    bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims

#endif  // CANN_ACL_TENSOR_H