Spaces:
Sleeping
Sleeping
// These are generated at build time by cmake custom command | |
typedef ggml_fp16_t half; | |
static std::string ggml_kompute_format_name(int device) { | |
return "Kompute" + std::to_string(device); | |
} | |
struct ggml_kompute_context { | |
int device; | |
std::string name; | |
std::shared_ptr<vk::DescriptorPool> pool; | |
ggml_kompute_context(int device) | |
: device(device), name(ggml_kompute_format_name(device)) {} | |
}; | |
// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object | |
// and consolidate the init functions and simplify object lifetime management. As it currently stands, | |
// we *have* to have the kompute manager no matter what for device discovery, but the kompute context | |
// is only created when a device is set and vulkan is explicitly turned on. | |
static ggml_kompute_context *s_kompute_context = nullptr; | |
class kompute_manager { | |
kp::Manager *s_mgr = nullptr; | |
public: | |
kp::Manager *operator()() { | |
if (s_mgr && !s_mgr->hasInstance()) { | |
destroy(); | |
} | |
if (!s_mgr) { | |
s_mgr = new kp::Manager; | |
} | |
return s_mgr; | |
} | |
void destroy() { | |
delete s_mgr; | |
s_mgr = nullptr; | |
} | |
}; | |
static kompute_manager komputeManager; | |
struct ggml_vk_memory { | |
void *data = nullptr; | |
size_t size = 0; | |
vk::DeviceMemory *primaryMemory = nullptr; | |
vk::Buffer *primaryBuffer = nullptr; | |
vk::DeviceMemory *stagingMemory = nullptr; | |
vk::Buffer *stagingBuffer = nullptr; | |
}; | |
__attribute__((constructor)) | |
static void enable_sam() { | |
setenv("RADV_PERFTEST", "sam", false); | |
} | |
static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) { | |
vk::PhysicalDeviceFeatures availableFeatures; | |
physical_device.getFeatures(&availableFeatures); | |
if (!availableFeatures.shaderInt16) | |
return false; | |
vk::PhysicalDeviceVulkan11Features availableFeatures11; | |
vk::PhysicalDeviceVulkan12Features availableFeatures12; | |
availableFeatures11.pNext = &availableFeatures12; | |
availableFeatures12.pNext = nullptr; | |
vk::PhysicalDeviceFeatures2 features2; | |
features2.pNext = &availableFeatures11; | |
physical_device.getFeatures2(&features2); | |
if (!availableFeatures11.uniformAndStorageBuffer16BitAccess || | |
!availableFeatures11.storageBuffer16BitAccess) { | |
return false; | |
} | |
if (!availableFeatures12.storageBuffer8BitAccess || | |
!availableFeatures12.uniformAndStorageBuffer8BitAccess || | |
!availableFeatures12.shaderFloat16 || | |
!availableFeatures12.shaderInt8) { | |
return false; | |
} | |
return true; | |
} | |
static const char * ggml_vk_getVendorName(uint32_t vendorID) { | |
switch (vendorID) { | |
case 0x10DE: | |
return "nvidia"; | |
case 0x1002: | |
return "amd"; | |
case 0x8086: | |
return "intel"; | |
default: | |
return "unknown"; | |
} | |
} | |
static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) { | |
std::vector<ggml_vk_device> results; | |
if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance()) | |
return results; | |
std::vector<vk::PhysicalDevice> physical_devices; | |
try { | |
physical_devices = komputeManager()->listDevices(); | |
} catch (vk::SystemError & err) { | |
std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n"; | |
return results; | |
} | |
uint32_t deviceCount = physical_devices.size(); | |
if (deviceCount == 0) | |
return results; | |
std::unordered_map<std::string, size_t> count_by_name; | |
for (uint32_t i = 0; i < deviceCount; i++) { | |
const auto & physical_device = physical_devices[i]; | |
VkPhysicalDeviceProperties dev_props = physical_device.getProperties(); | |
VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties(); | |
const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion); | |
const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion); | |
if (major < 1 || minor < 2) | |
continue; | |
if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device)) | |
continue; | |
size_t heapSize = 0; | |
for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) { | |
VkMemoryHeap heap = memoryProperties.memoryHeaps[j]; | |
if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) { | |
heapSize = heap.size; | |
break; | |
} | |
} | |
if (heapSize < memoryRequired) | |
continue; | |
auto ext_props = physical_device.enumerateDeviceExtensionProperties(); | |
bool has_maintenance4 = false; | |
// Check if maintenance4 is supported | |
for (const auto & properties : ext_props) { | |
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) { | |
has_maintenance4 = true; | |
} | |
} | |
vk::PhysicalDeviceSubgroupProperties subgroup_props; | |
vk::PhysicalDeviceProperties2 dev_props2; | |
vk::PhysicalDeviceMaintenance3Properties dev_props3; | |
vk::PhysicalDeviceMaintenance4Properties dev_props4; | |
dev_props2.pNext = &dev_props3; | |
dev_props3.pNext = &subgroup_props; | |
if (has_maintenance4) { | |
subgroup_props.pNext = &dev_props4; | |
} | |
physical_device.getProperties2(&dev_props2); | |
if (subgroup_props.subgroupSize < 32) | |
continue; | |
ggml_vk_device d; | |
d.index = i; | |
d.type = dev_props.deviceType; | |
d.heapSize = heapSize; | |
d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID)); | |
d.subgroupSize = subgroup_props.subgroupSize; | |
d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment; | |
if (has_maintenance4) { | |
d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize); | |
} else { | |
d.maxAlloc = dev_props3.maxMemoryAllocationSize; | |
} | |
std::string name(dev_props.deviceName); | |
size_t n_idx = ++count_by_name[name]; | |
if (n_idx > 1) { | |
name += " (" + std::to_string(n_idx) + ")"; | |
} | |
d.name = strdup(name.c_str()); | |
results.push_back(d); | |
} | |
std::stable_sort(results.begin(), results.end(), | |
[](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool { | |
if (lhs.type != rhs.type) { | |
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true; | |
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false; | |
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true; | |
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false; | |
} | |
return lhs.heapSize < rhs.heapSize; | |
} | |
); | |
return results; | |
} | |
// public API returns a C-style array | |
ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) { | |
auto devices = ggml_vk_available_devices_internal(memoryRequired); | |
*count = devices.size(); | |
if (devices.empty()) { | |
return nullptr; | |
} | |
size_t nbytes = sizeof (ggml_vk_device) * (devices.size()); | |
auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes)); | |
memcpy(arr, devices.data(), nbytes); | |
return arr; | |
} | |
static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) { | |
devices.erase( | |
std::remove_if(devices.begin(), devices.end(), | |
[&targetVendor](const ggml_vk_device& device) { | |
return device.vendor != targetVendor; | |
}), | |
devices.end() | |
); | |
} | |
static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) { | |
devices.erase( | |
std::remove_if(devices.begin(), devices.end(), | |
[&targetName](const ggml_vk_device& device) { | |
return device.name != targetName; | |
}), | |
devices.end() | |
); | |
} | |
static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) { | |
if (name.empty()) | |
return false; | |
auto devices = ggml_vk_available_devices_internal(memoryRequired); | |
if (name == "amd" || name == "nvidia" || name == "intel") { | |
ggml_vk_filterByVendor(devices, name); | |
} else if (name != "gpu") { | |
ggml_vk_filterByName(devices, name); | |
} | |
if (devices.empty()) | |
return false; | |
*device = devices.front(); | |
return true; | |
} | |
bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) { | |
return ggml_vk_get_device(device, memoryRequired, std::string(name)); | |
} | |
bool ggml_vk_has_vulkan() { | |
return komputeManager()->hasVulkan(); | |
} | |
bool ggml_vk_has_device() { | |
return komputeManager()->hasDevice(); | |
} | |
ggml_vk_device ggml_vk_current_device() { | |
if (!komputeManager()->hasDevice()) | |
return ggml_vk_device(); | |
auto devices = ggml_vk_available_devices_internal(0); | |
ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data()); | |
GGML_ASSERT(!devices.empty()); | |
return devices.front(); | |
} | |
static | |
void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) { | |
std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = { | |
vk::DescriptorPoolSize( | |
vk::DescriptorType::eStorageBuffer, | |
3 * size // Descriptor count is number of possible tensors to pass into an algorithm | |
) | |
}; | |
vk::DescriptorPoolCreateInfo descriptorPoolInfo( | |
vk::DescriptorPoolCreateFlags(), | |
size, // Max sets | |
static_cast<uint32_t>(descriptorPoolSizes.size()), | |
descriptorPoolSizes.data()); | |
ctx->pool = std::make_shared<vk::DescriptorPool>(); | |
vk::Result r = komputeManager()->device()->createDescriptorPool( | |
&descriptorPoolInfo, nullptr, ctx->pool.get()); | |
if (r != vk::Result::eSuccess) | |
std::cerr << "Error allocating descriptor pool" << vk::to_string(r); | |
} | |
static | |
void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) { | |
if (ctx->pool) { | |
komputeManager()->device()->destroy( | |
*ctx->pool, | |
(vk::Optional<const vk::AllocationCallbacks>)nullptr); | |
ctx->pool = nullptr; | |
} | |
} | |
static | |
vk::Buffer *ggml_vk_allocate_buffer(size_t size) { | |
vk::BufferCreateInfo bufferCreateInfo; | |
bufferCreateInfo.size = size; | |
bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer | | |
vk::BufferUsageFlagBits::eTransferSrc | | |
vk::BufferUsageFlagBits::eTransferDst; | |
bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive; | |
vk::Buffer *vkBuffer = new vk::Buffer; | |
vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer); | |
if (r != vk::Result::eSuccess) | |
std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl; | |
return vkBuffer; | |
} | |
static | |
vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) { | |
uint32_t memoryTypeIndex = -1; | |
bool memoryTypeIndexFound = false; | |
vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties(); | |
for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { | |
const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i]; | |
const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex]; | |
if (memoryHeap.size < size) { | |
continue; | |
} | |
if (requirements.memoryTypeBits & (1 << i)) { | |
if (((memoryProperties.memoryTypes[i]).propertyFlags & | |
flags) == flags) { | |
memoryTypeIndex = i; | |
memoryTypeIndexFound = true; | |
if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) { | |
*isHostVisible = true; | |
} | |
break; | |
} | |
} | |
} | |
if (!memoryTypeIndexFound) { | |
throw std::runtime_error( | |
"Memory type index for buffer creation not found"); | |
} | |
vk::MemoryAllocateInfo allocInfo; | |
allocInfo.allocationSize = size; | |
allocInfo.memoryTypeIndex = memoryTypeIndex; | |
vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory; | |
vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory); | |
if (r != vk::Result::eSuccess) { | |
std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl; | |
throw std::runtime_error("Error allocating vulkan memory."); | |
} | |
return vkDeviceMemory; | |
} | |
static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) { | |
size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer); | |
// If offset is already aligned, return it directly | |
if (offset % minStorageBufferOffsetAlignment == 0) { | |
return offset; | |
} | |
// Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset | |
return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment; | |
} | |
static ggml_vk_memory ggml_vk_allocate(size_t size) { | |
ggml_vk_memory memory; | |
bool isHostVisible = false; | |
{ | |
memory.primaryBuffer = ggml_vk_allocate_buffer(size); | |
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer); | |
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal; | |
memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); | |
komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0); | |
if (isHostVisible) { | |
vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data); | |
if (r != vk::Result::eSuccess) | |
std::cerr << "Error mapping memory" << vk::to_string(r); | |
} | |
} | |
if (!isHostVisible) { | |
memory.stagingBuffer = ggml_vk_allocate_buffer(size); | |
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer); | |
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible | | |
vk::MemoryPropertyFlagBits::eHostCoherent | | |
vk::MemoryPropertyFlagBits::eHostCached; | |
memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); | |
komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0); | |
vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data); | |
if (r != vk::Result::eSuccess) | |
std::cerr << "Error mapping memory" << vk::to_string(r); | |
} | |
memory.size = size; | |
return memory; | |
} | |
static void ggml_vk_free_memory(ggml_vk_memory &memory) | |
{ | |
komputeManager()->device()->destroy( | |
*memory.primaryBuffer, | |
(vk::Optional<const vk::AllocationCallbacks>)nullptr); | |
if (memory.stagingBuffer) { | |
komputeManager()->device()->destroy( | |
*memory.stagingBuffer, | |
(vk::Optional<const vk::AllocationCallbacks>)nullptr); | |
} | |
komputeManager()->device()->freeMemory( | |
*memory.primaryMemory, | |
(vk::Optional<const vk::AllocationCallbacks>)nullptr); | |
if (memory.stagingMemory) { | |
komputeManager()->device()->freeMemory( | |
*memory.stagingMemory, | |
(vk::Optional<const vk::AllocationCallbacks>)nullptr); | |
} | |
} | |
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft); | |
static | |
ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) { | |
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer; | |
// compatibility with ggml-backend | |
GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name); | |
ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context); | |
const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data); | |
GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size)); | |
offset = uint64_t(ioffs); | |
return buf_ctx; | |
} | |
static | |
const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) { | |
uint64_t originalOffset = 0; | |
auto * res = ggml_vk_find_tensor(t, originalOffset); | |
if (!res) { | |
static std::shared_ptr<kp::Tensor> nullTensor = nullptr; | |
return nullTensor; | |
} | |
// Create a tensor whose memory will be composed of our buffers at the correct offset | |
const size_t nelements = ggml_nelements(t); | |
size_t nbytes = ggml_nbytes(t); | |
size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset); | |
if (alignedOffset) { | |
*alignedOffset = originalOffset - vulkanOffset; | |
nbytes += *alignedOffset; | |
} | |
return komputeManager()->tensor( | |
t->data, | |
nelements, | |
nbytes, kp::Tensor::TensorDataTypes::eFloat, | |
res->primaryMemory, res->primaryBuffer, | |
res->stagingMemory, res->stagingBuffer, | |
vulkanOffset); | |
} | |
static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) { | |
if (size % sizeof(uint32_t) != 0) { | |
throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)"); | |
} | |
const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData); | |
size_t count = size / sizeof(uint32_t); | |
return std::vector<uint32_t>(data_ptr, data_ptr + count); | |
} | |
inline static | |
uint32_t safe_divide(uint32_t a, uint32_t b) { | |
if (b <= 1) { | |
return a; | |
} | |
if ((a % b) != 0) { | |
fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b); | |
GGML_ABORT("safe_divide result would've had remainder"); | |
} | |
return a / b; | |
} | |
static void ggml_vk_add( | |
kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& inA, | |
const std::shared_ptr<kp::Tensor>& inB, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, | |
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, | |
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, | |
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, | |
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, | |
int32_t ne0, | |
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 | |
) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv, | |
kp::shader_data::op_add_comp_spv_len); | |
struct PushConstants { | |
uint32_t inAOff, inBOff, outOff; | |
int32_t ne00; | |
int32_t nb00, nb01, nb02, nb03; | |
int32_t ne10, ne11, ne12, ne13; | |
int32_t nb10, nb11, nb12, nb13; | |
int32_t ne0; | |
int32_t nb0, nb1, nb2, nb3; | |
} const pushConsts { | |
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), | |
ne00, | |
nb00, nb01, nb02, nb03, | |
ne10, ne11, ne12, ne13, | |
nb10, nb11, nb12, nb13, | |
ne0, | |
nb0, nb1, nb2, nb3 | |
}; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(__func__)) { | |
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(__func__); | |
s_algo->setTensors({inA, inB, out}); | |
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
static void ggml_vk_addrow(kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& inA, | |
const std::shared_ptr<kp::Tensor>& inB, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, | |
uint32_t size, uint32_t row = 0) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv, | |
kp::shader_data::op_addrow_comp_spv_len); | |
struct PushConstants { | |
uint32_t inAOff, inBOff, outOff; | |
uint32_t row; | |
} const pushConsts { | |
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), | |
row | |
}; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(__func__)) | |
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); | |
else { | |
s_algo = komputeManager()->getAlgorithm(__func__); | |
s_algo->setTensors({inA, inB, out}); | |
s_algo->setWorkgroup({size}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
static void ggml_vk_mul( | |
kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& inA, | |
const std::shared_ptr<kp::Tensor>& inB, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, | |
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, | |
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, | |
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, | |
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, | |
int32_t ne0, | |
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 | |
) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv, | |
kp::shader_data::op_mul_comp_spv_len); | |
struct PushConstants { | |
uint32_t inAOff, inBOff, outOff; | |
int32_t ne00; | |
int32_t nb00, nb01, nb02, nb03; | |
int32_t ne10, ne11, ne12, ne13; | |
int32_t nb10, nb11, nb12, nb13; | |
int32_t ne0; | |
int32_t nb0, nb1, nb2, nb3; | |
} const pushConsts { | |
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), | |
ne00, | |
nb00, nb01, nb02, nb03, | |
ne10, ne11, ne12, ne13, | |
nb10, nb11, nb12, nb13, | |
ne0, | |
nb0, nb1, nb2, nb3 | |
}; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(__func__)) { | |
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(__func__); | |
s_algo->setTensors({inA, inB, out}); | |
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
static void ggml_vk_scale(kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& in, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inOff, uint32_t outOff, | |
uint32_t size, float scale) { | |
const static auto spirv_1 = getSpirvShader( | |
kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len | |
); | |
const static auto spirv_8 = getSpirvShader( | |
kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len | |
); | |
struct PushConstants { | |
uint32_t inOff, outOff; | |
float scale; | |
} const pushConsts { | |
safe_divide(inOff, 4), safe_divide(outOff, 4), | |
scale | |
}; | |
const auto * spirv = &spirv_1; | |
std::string name(__func__); | |
if (size % 8 == 0) { | |
size /= 8; | |
name += "_8"; | |
spirv = &spirv_8; | |
} | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(name)) { | |
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(name); | |
s_algo->setTensors({in, out}); | |
s_algo->setWorkgroup({size}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
static void ggml_vk_xxlu( | |
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& in, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inOff, uint32_t outOff, | |
uint32_t size | |
) { | |
struct PushConstants { | |
uint32_t inOff, outOff; | |
} const pushConsts { | |
safe_divide(inOff, 4), safe_divide(outOff, 4), | |
}; | |
auto name = std::string(__func__) + "_" + suffix; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(name)) { | |
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(name); | |
s_algo->setTensors({in, out}); | |
s_algo->setWorkgroup({size}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
template <typename... Args> | |
static void ggml_vk_silu(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv, | |
kp::shader_data::op_silu_comp_spv_len); | |
ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_relu(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv, | |
kp::shader_data::op_relu_comp_spv_len); | |
ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_gelu(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv, | |
kp::shader_data::op_gelu_comp_spv_len); | |
ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...); | |
} | |
static void ggml_vk_soft_max( | |
kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& inA, | |
const std::shared_ptr<kp::Tensor>& inB, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, | |
int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03, | |
float scale | |
) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv, | |
kp::shader_data::op_softmax_comp_spv_len); | |
struct PushConstants { | |
uint32_t inAOff, inBOff, outOff; | |
int32_t ne00, ne01, ne02; | |
float scale; | |
int32_t mask; | |
} pushConsts { | |
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), | |
ne00, ne01, ne02, | |
scale, | |
bool(inB) | |
}; | |
auto & inB_ = inB ? inB : inA; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(__func__)) { | |
// FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device | |
const uint32_t local_x = 32; | |
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(__func__); | |
s_algo->setTensors({inA, inB_, out}); | |
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
static void ggml_vk_norm_( | |
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& in, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inOff, uint32_t outOff, | |
int32_t ne00, int32_t nb01, | |
int32_t nrows, float epsilon | |
) { | |
GGML_ASSERT(nb01%sizeof(float) == 0); | |
GGML_ASSERT(ne00%sizeof(float) == 0); | |
struct PushConstants { | |
uint32_t inOff, outOff; | |
uint32_t ne00, nb01; | |
float eps; | |
} pushConsts { | |
safe_divide(inOff, 4), safe_divide(outOff, 4), | |
(uint32_t)ne00, (uint32_t)nb01, epsilon | |
}; | |
auto name = std::string(__func__) + "_" + suffix; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(name)) { | |
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(name); | |
s_algo->setTensors({in, out}); | |
s_algo->setWorkgroup({(uint32_t)nrows}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
template <typename... Args> | |
static void ggml_vk_norm(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv, | |
kp::shader_data::op_norm_comp_spv_len); | |
ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_rms_norm(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv, | |
kp::shader_data::op_rmsnorm_comp_spv_len); | |
ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...); | |
} | |
static void ggml_vk_diag_mask_inf(kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& in, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inOff, uint32_t outOff, | |
uint32_t n_past, | |
int32_t ne00, int32_t ne01, int32_t ne02) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv, | |
kp::shader_data::op_diagmask_comp_spv_len); | |
struct PushConstants { | |
uint32_t inOff, outOff; | |
uint32_t n_past; | |
int32_t ne00, ne01; | |
} pushConsts { | |
safe_divide(inOff, 4), safe_divide(outOff, 4), | |
n_past, | |
ne00, ne01 | |
}; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(__func__)) | |
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts}); | |
else { | |
s_algo = komputeManager()->getAlgorithm(__func__); | |
s_algo->setTensors({in, out}); | |
s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
static void ggml_vk_mul_mat_f16( | |
kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& inA, | |
const std::shared_ptr<kp::Tensor>& inB, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, | |
int32_t ne00, int32_t ne01, int32_t ne02, | |
uint32_t nb00, uint32_t nb01, uint32_t nb02, | |
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, | |
uint32_t nb10, uint32_t nb11, uint32_t nb12, | |
int32_t ne0, int32_t ne1, | |
uint32_t r2, uint32_t r3 | |
) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv, | |
kp::shader_data::op_mul_mat_f16_comp_spv_len); | |
struct PushConstants { | |
uint32_t inAOff, inBOff, outOff; | |
int32_t ne00, ne01, ne02; | |
uint32_t nb00, nb01, nb02; | |
int32_t ne10, ne11, ne12; | |
uint32_t nb10, nb11, nb12; | |
int32_t ne0, ne1; | |
uint32_t r2, r3; | |
} pushConsts { | |
safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4), | |
ne00, ne01, ne02, | |
nb00, nb01, nb02, | |
ne10, ne11, ne12, | |
nb10, nb11, nb12, | |
ne0, ne1, | |
r2, r3 | |
}; | |
const unsigned ny = unsigned((ne11 + 4 - 1)/4); | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(__func__)) { | |
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; | |
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(__func__); | |
s_algo->setTensors({inA, inB, out}); | |
s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& inA, | |
const std::shared_ptr<kp::Tensor>& inB, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, | |
int32_t ne00, int32_t ne01, int32_t ne02, | |
uint32_t nb01, uint32_t nb02, | |
int32_t ne11, int32_t ne12, | |
uint32_t nb11, uint32_t nb12, | |
uint32_t nb1, uint32_t nb2) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv, | |
kp::shader_data::op_mul_mat_mat_f32_comp_spv_len); | |
struct PushConstants { | |
uint32_t inAOff, inBOff, outOff; | |
int32_t ne00, ne01, ne02, ne11, ne12; | |
uint32_t nb01, nb02; | |
uint32_t nb11, nb12; | |
uint32_t nb1, nb2; | |
} pushConsts { | |
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), | |
ne00, ne01, ne02, ne11, ne12, | |
nb01, nb02, nb11, nb12, | |
nb1, nb2 | |
}; | |
const uint32_t local_x = ggml_vk_current_device().subgroupSize; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(__func__)) { | |
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), | |
{inA, inB, out}, spirv, | |
{unsigned(ne01), | |
unsigned(ne11), | |
unsigned(std::max(ne12, ne02)) | |
}, | |
{local_x}, | |
{pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(__func__); | |
s_algo->setTensors({inA, inB, out}); | |
s_algo->setWorkgroup({unsigned(ne01), | |
unsigned(ne11), | |
unsigned(std::max(ne12, ne02)), | |
}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
static void ggml_vk_mul_mat_impl( | |
const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& inA, | |
const std::shared_ptr<kp::Tensor>& inB, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, | |
int32_t ne00, int32_t ne01, int32_t ne02, | |
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, | |
int32_t ne0, int32_t ne1, | |
uint32_t r2, uint32_t r3 | |
) { | |
struct PushConstants { | |
uint32_t inAOff, inBOff, outOff; | |
int32_t ne00, ne01, ne02; | |
int32_t ne10, ne12; | |
int32_t ne0, ne1; | |
uint32_t r2, r3; | |
} pushConsts { | |
safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), | |
ne00, ne01, ne02, | |
ne10, ne12, | |
ne0, ne1, | |
r2, r3 | |
}; | |
auto name = std::string(__func__) + "_" + suffix; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(name)) { | |
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; | |
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(name); | |
s_algo->setTensors({inA, inB, out}); | |
s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
template <typename... Args> | |
static void ggml_vk_mul_mat_q4_0(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv, | |
kp::shader_data::op_mul_mat_q4_0_comp_spv_len); | |
ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_mul_mat_q4_1(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv, | |
kp::shader_data::op_mul_mat_q4_1_comp_spv_len); | |
ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_mul_mat_q8_0(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv, | |
kp::shader_data::op_mul_mat_q8_0_comp_spv_len); | |
ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...); | |
} | |
static void ggml_vk_mul_mat_q6_k( | |
kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& inA, | |
const std::shared_ptr<kp::Tensor>& inB, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, | |
int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1, | |
int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02 | |
) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv, | |
kp::shader_data::op_mul_mat_q6_k_comp_spv_len); | |
struct PushConstants { | |
uint32_t inAOff, inBOff, outOff; | |
int32_t ne00, ne10, ne0, ne1, ne01, gqa; | |
} pushConsts { | |
inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4), | |
ne00, ne10, ne0, ne1, ne01, ne12/ne02 | |
}; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(__func__)) { | |
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; | |
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(__func__); | |
s_algo->setTensors({inA, inB, out}); | |
s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
static void ggml_vk_get_rows( | |
const std::vector<uint32_t>& spirv, | |
const char * suffix, | |
unsigned element_size, unsigned qk, | |
kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& inA, | |
const std::shared_ptr<kp::Tensor>& inB, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, | |
int32_t ne00, int32_t nb01, int32_t nb1, | |
uint32_t size | |
) { | |
GGML_ASSERT(nb01%element_size == 0); | |
GGML_ASSERT(nb1%sizeof(float) == 0); | |
if (qk) GGML_ASSERT(ne00%qk == 0); | |
struct PushConstants { | |
uint32_t inAOff, inBOff, outOff; | |
int32_t ne00, nb01, nb1; | |
} pushConsts { | |
safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), | |
ne00, nb01, nb1 | |
}; | |
auto name = std::string(__func__) + "_" + suffix; | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(name)) { | |
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(name); | |
s_algo->setTensors({inA, inB, out}); | |
s_algo->setWorkgroup({size}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
template <typename... Args> | |
static void ggml_vk_get_rows_f32(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f32_comp_spv, | |
kp::shader_data::op_getrows_f32_comp_spv_len); | |
ggml_vk_get_rows(spirv, "f32", sizeof(float), 0, std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_get_rows_f16(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv, | |
kp::shader_data::op_getrows_f16_comp_spv_len); | |
ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_get_rows_q4_0(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv, | |
kp::shader_data::op_getrows_q4_0_comp_spv_len); | |
ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_get_rows_q4_1(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv, | |
kp::shader_data::op_getrows_q4_1_comp_spv_len); | |
ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_get_rows_q6_k(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv, | |
kp::shader_data::op_getrows_q6_k_comp_spv_len); | |
ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...); | |
} | |
static void ggml_vk_rope( | |
kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& inA, | |
const std::shared_ptr<kp::Tensor>& inB, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inAOff, uint32_t inBOff, uint32_t outOff, | |
ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig, | |
float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow, | |
int32_t ne01, int32_t ne02, int32_t ne03, | |
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, | |
int32_t ne0, | |
uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 | |
) { | |
GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32); | |
static const auto spirv_f16 = getSpirvShader( | |
kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len | |
); | |
static const auto spirv_f32 = getSpirvShader( | |
kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len | |
); | |
int type_size = src0t == GGML_TYPE_F16 ? 2 : 4; | |
GGML_ASSERT(nb03 % type_size == 0); | |
GGML_ASSERT(nb02 % type_size == 0); | |
GGML_ASSERT(nb01 % type_size == 0); | |
GGML_ASSERT(nb00 % type_size == 0); | |
GGML_ASSERT(nb3 % type_size == 0); | |
GGML_ASSERT(nb2 % type_size == 0); | |
GGML_ASSERT(nb1 % type_size == 0); | |
GGML_ASSERT(nb0 % type_size == 0); | |
struct PushConstants { | |
uint32_t inAOff, inBOff, outOff; | |
int32_t n_dims, mode, n_ctx_orig; | |
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; | |
uint32_t nb00, nb01, nb02, nb03; | |
int32_t ne0; | |
uint32_t nb0, nb1, nb2, nb3; | |
} pushConsts { | |
safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size), | |
n_dims, mode, n_ctx_orig, | |
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, | |
nb00, nb01, nb02, nb03, | |
ne0, | |
nb0, nb1, nb2, nb3 | |
}; | |
auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32"); | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(name)) { | |
s_algo = komputeManager()->algorithm<float, PushConstants>( | |
name, s_kompute_context->pool.get(), {inA, inB, out}, | |
src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32, | |
{unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts} | |
); | |
} else { | |
s_algo = komputeManager()->getAlgorithm(name); | |
s_algo->setTensors({inA, inB, out}); | |
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
static void ggml_vk_cpy( | |
const std::vector<uint32_t>& spirv, | |
uint32_t in_element_size, uint32_t out_element_size, | |
kp::Sequence& seq, | |
const std::shared_ptr<kp::Tensor>& in, | |
const std::shared_ptr<kp::Tensor>& out, | |
uint32_t inOff, uint32_t outOff, | |
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, | |
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, | |
int32_t ne0, int32_t ne1, int32_t ne2, | |
uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 | |
) { | |
struct PushConstants { | |
uint32_t inOff, outOff; | |
int32_t ne00, ne01, ne02; | |
uint32_t nb00, nb01, nb02, nb03; | |
int32_t ne0, ne1, ne2; | |
uint32_t nb0, nb1, nb2, nb3; | |
} pushConsts { | |
safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size), | |
ne00, ne01, ne02, | |
nb00, nb01, nb02, nb03, | |
ne0, ne1, ne2, | |
nb0, nb1, nb2, nb3 | |
}; | |
std::string name = std::string(__func__) | |
+ "_i_" + std::to_string(in_element_size) | |
+ "_o_" + std::to_string(out_element_size); | |
std::shared_ptr<kp::Algorithm> s_algo = nullptr; | |
if (!komputeManager()->hasAlgorithm(name)) | |
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); | |
else { | |
s_algo = komputeManager()->getAlgorithm(name); | |
s_algo->setTensors({in, out}); | |
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); | |
s_algo->setPushConstants<PushConstants>({pushConsts}); | |
s_algo->updateDescriptors(s_kompute_context->pool.get()); | |
} | |
seq.record<kp::OpAlgoDispatch>(s_algo); | |
} | |
template <typename... Args> | |
static void ggml_vk_cpy_f32_f16(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv, | |
kp::shader_data::op_cpy_f32_f16_comp_spv_len); | |
ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_cpy_f32_f32(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv, | |
kp::shader_data::op_cpy_f32_f32_comp_spv_len); | |
ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_cpy_f16_f16(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv, | |
kp::shader_data::op_cpy_f16_f16_comp_spv_len); | |
ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...); | |
} | |
template <typename... Args> | |
static void ggml_vk_cpy_f16_f32(Args&&... args) { | |
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv, | |
kp::shader_data::op_cpy_f16_f32_comp_spv_len); | |
ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...); | |
} | |
static bool ggml_vk_supports_op(const struct ggml_tensor * op) { | |
switch (op->type) { | |
case GGML_TYPE_F16: | |
case GGML_TYPE_F32: | |
case GGML_TYPE_Q4_0: | |
case GGML_TYPE_Q4_1: | |
break; | |
default: | |
return false; | |
} | |
switch (op->op) { | |
case GGML_OP_UNARY: | |
switch (ggml_get_unary_op(op)) { | |
case GGML_UNARY_OP_RELU: | |
case GGML_UNARY_OP_GELU: | |
case GGML_UNARY_OP_SILU: | |
return ggml_is_contiguous(op->src[0]); | |
default: | |
; | |
} | |
break; | |
case GGML_OP_NONE: | |
case GGML_OP_RESHAPE: | |
case GGML_OP_VIEW: | |
case GGML_OP_TRANSPOSE: | |
case GGML_OP_PERMUTE: | |
case GGML_OP_ADD: | |
case GGML_OP_MUL: | |
case GGML_OP_SCALE: | |
case GGML_OP_SOFT_MAX: | |
case GGML_OP_RMS_NORM: | |
case GGML_OP_NORM: | |
case GGML_OP_ROPE: | |
return true; | |
case GGML_OP_DUP: | |
case GGML_OP_CPY: | |
case GGML_OP_CONT: | |
switch (op->src[0]->type) { | |
case GGML_TYPE_F32: | |
case GGML_TYPE_F16: | |
break; | |
default: | |
return false; | |
} | |
switch (op->type) { | |
case GGML_TYPE_F32: | |
case GGML_TYPE_F16: | |
break; | |
default: | |
return false; | |
} | |
return true; | |
case GGML_OP_DIAG_MASK_INF: | |
return op->ne[3] == 1; | |
case GGML_OP_GET_ROWS: | |
switch (op->src[0]->type) { | |
case GGML_TYPE_F32: | |
case GGML_TYPE_F16: | |
case GGML_TYPE_Q4_0: | |
case GGML_TYPE_Q4_1: | |
case GGML_TYPE_Q6_K: | |
return op->ne[2] == 1 && op->ne[3] == 1; | |
default: | |
; | |
} | |
return false; | |
case GGML_OP_MUL_MAT: | |
if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1])) | |
return false; | |
switch (op->src[0]->type) { | |
case GGML_TYPE_F32: | |
case GGML_TYPE_Q6_K: | |
return op->ne[3] == 1; | |
case GGML_TYPE_F16: | |
case GGML_TYPE_Q8_0: | |
case GGML_TYPE_Q4_0: | |
case GGML_TYPE_Q4_1: | |
return true; | |
default: | |
; | |
} | |
default: | |
; | |
} | |
return false; | |
} | |
static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) { | |
const int n_seq = 8; | |
// FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting | |
// it to the size of the graph, but I think it can be made smaller? | |
ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes); | |
std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq); | |
for (auto& sequence : sequences) { | |
sequence = komputeManager()->sequence(); | |
} | |
for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) { | |
const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq; | |
auto& seq = *sequences[seq_idx]; | |
const int node_start = (seq_idx + 0) * n_nodes_per_seq; | |
const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes); | |
bool any_commands_recorded = false; | |
for (int i = node_start; i < node_end; ++i) { | |
struct ggml_tensor * src0 = gf->nodes[i]->src[0]; | |
struct ggml_tensor * src1 = gf->nodes[i]->src[1]; | |
struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2); | |
struct ggml_tensor * dst = gf->nodes[i]; | |
GGML_ASSERT(dst->data != nullptr); | |
if (ggml_is_empty(dst)) { | |
continue; | |
} | |
switch (dst->op) { | |
case GGML_OP_NONE: | |
case GGML_OP_RESHAPE: | |
case GGML_OP_VIEW: | |
case GGML_OP_TRANSPOSE: | |
case GGML_OP_PERMUTE: | |
continue; // noop -> next node | |
default: | |
break; | |
} | |
any_commands_recorded = true; | |
if (!ggml_vk_supports_op(dst)) { | |
fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); | |
GGML_ABORT("unsupported op"); | |
} | |
const int32_t ne00 = src0 ? src0->ne[0] : 0; | |
const int32_t ne01 = src0 ? src0->ne[1] : 0; | |
const int32_t ne02 = src0 ? src0->ne[2] : 0; | |
const int32_t ne03 = src0 ? src0->ne[3] : 0; | |
const uint32_t nb00 = src0 ? src0->nb[0] : 0; | |
const uint32_t nb01 = src0 ? src0->nb[1] : 0; | |
const uint32_t nb02 = src0 ? src0->nb[2] : 0; | |
const uint32_t nb03 = src0 ? src0->nb[3] : 0; | |
const int32_t ne10 = src1 ? src1->ne[0] : 0; | |
const int32_t ne11 = src1 ? src1->ne[1] : 0; | |
const int32_t ne12 = src1 ? src1->ne[2] : 0; | |
const int32_t ne13 = src1 ? src1->ne[3] : 0; | |
const uint32_t nb10 = src1 ? src1->nb[0] : 0; | |
const uint32_t nb11 = src1 ? src1->nb[1] : 0; | |
const uint32_t nb12 = src1 ? src1->nb[2] : 0; | |
const uint32_t nb13 = src1 ? src1->nb[3] : 0; | |
const int32_t ne0 = dst ? dst->ne[0] : 0; | |
const int32_t ne1 = dst ? dst->ne[1] : 0; | |
const int32_t ne2 = dst ? dst->ne[2] : 0; | |
// const int32_t ne3 = dst ? dst->ne[3] : 0; | |
const uint32_t nb0 = dst ? dst->nb[0] : 0; | |
const uint32_t nb1 = dst ? dst->nb[1] : 0; | |
const uint32_t nb2 = dst ? dst->nb[2] : 0; | |
const uint32_t nb3 = dst ? dst->nb[3] : 0; | |
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; | |
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; | |
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; | |
const static std::shared_ptr<kp::Tensor> nullTensor = nullptr; | |
uint32_t off_src0 = 0; | |
uint32_t off_src1 = 0; | |
uint32_t off_dst = 0; | |
const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor; | |
const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor; | |
const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor; | |
switch (dst->op) { | |
case GGML_OP_ADD: | |
{ | |
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { | |
// src1 is a row | |
ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00); | |
} else { | |
ggml_vk_add( | |
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, | |
ne00, ne01, ne02, ne03, | |
nb00, nb01, nb02, nb03, | |
ne10, ne11, ne12, ne13, | |
nb10, nb11, nb12, nb13, | |
ne0, | |
nb0, nb1, nb2, nb3 | |
); | |
} | |
} break; | |
case GGML_OP_MUL: | |
{ | |
ggml_vk_mul( | |
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, | |
ne00, ne01, ne02, ne03, | |
nb00, nb01, nb02, nb03, | |
ne10, ne11, ne12, ne13, | |
nb10, nb11, nb12, nb13, | |
ne0, | |
nb0, nb1, nb2, nb3 | |
); | |
} break; | |
case GGML_OP_SCALE: | |
{ | |
float scale; memcpy(&scale, dst->op_params, sizeof(float)); | |
ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale); | |
} break; | |
case GGML_OP_UNARY: | |
{ | |
int64_t n = ggml_nelements(dst); | |
GGML_ASSERT(n % 4 == 0); | |
switch (ggml_get_unary_op(gf->nodes[i])) { | |
case GGML_UNARY_OP_SILU: | |
{ | |
ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4); | |
} break; | |
case GGML_UNARY_OP_RELU: | |
{ | |
ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4); | |
} break; | |
case GGML_UNARY_OP_GELU: | |
{ | |
GGML_ASSERT(n % 8 == 0); | |
ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8); | |
} break; | |
default: | |
{ | |
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); | |
GGML_ABORT("fatal error"); | |
} | |
} | |
} break; | |
case GGML_OP_SOFT_MAX: | |
{ | |
float scale; | |
float max_bias; | |
memcpy(&scale, (float *)dst->op_params + 0, sizeof(float)); | |
memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float)); | |
GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32); | |
GGML_ASSERT(max_bias == 0.0f); | |
ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale); | |
} break; | |
case GGML_OP_DIAG_MASK_INF: | |
{ | |
const int n_past = ((int32_t *)(dst->op_params))[0]; | |
ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02); | |
} break; | |
case GGML_OP_NORM: | |
{ | |
float eps; | |
memcpy(&eps, dst->op_params, sizeof(float)); | |
ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); | |
} break; | |
case GGML_OP_RMS_NORM: | |
{ | |
GGML_ASSERT(ne00 % 4 == 0); | |
float eps; | |
memcpy(&eps, dst->op_params, sizeof(float)); | |
ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); | |
} break; | |
case GGML_OP_MUL_MAT: | |
{ | |
GGML_ASSERT(ne00 == ne10); | |
GGML_ASSERT(ne12 % ne02 == 0); | |
GGML_ASSERT(ne13 % ne03 == 0); | |
const uint32_t r2 = ne12/ne02; | |
const uint32_t r3 = ne13/ne03; | |
if (src1t != GGML_TYPE_F32) { | |
fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); | |
goto not_implemented; | |
} | |
if (ggml_is_transposed(src0) || | |
ggml_is_transposed(src1)) { | |
fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); | |
goto not_implemented; | |
} | |
switch (src0t) { | |
case GGML_TYPE_F32: | |
ggml_vk_mul_mat_mat_f32( | |
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, | |
ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2 | |
); | |
break; | |
case GGML_TYPE_F16: | |
ggml_vk_mul_mat_f16( | |
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, | |
ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12, | |
ne0, ne1, r2, r3 | |
); | |
break; | |
case GGML_TYPE_Q8_0: | |
ggml_vk_mul_mat_q8_0( | |
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, | |
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 | |
); | |
break; | |
case GGML_TYPE_Q4_0: | |
ggml_vk_mul_mat_q4_0( | |
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, | |
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 | |
); | |
break; | |
case GGML_TYPE_Q4_1: | |
ggml_vk_mul_mat_q4_1( | |
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, | |
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 | |
); | |
break; | |
case GGML_TYPE_Q6_K: | |
ggml_vk_mul_mat_q6_k( | |
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, | |
ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02 | |
); | |
break; | |
default: { | |
fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); | |
goto not_implemented; | |
} | |
} | |
} break; | |
case GGML_OP_GET_ROWS: | |
{ | |
if (src0t == GGML_TYPE_F32) { | |
ggml_vk_get_rows_f32(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); | |
} else if (src0t == GGML_TYPE_F16) { | |
ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); | |
} else if (src0t == GGML_TYPE_Q4_0) { | |
ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); | |
} else if (src0t == GGML_TYPE_Q4_1) { | |
ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); | |
} else if (src0t == GGML_TYPE_Q6_K) { | |
ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); | |
} else { | |
fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t); | |
goto not_implemented; | |
} | |
} break; | |
case GGML_OP_ROPE: | |
{ | |
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet"); | |
GGML_ASSERT(ne10 == ne02); | |
GGML_ASSERT(src0t == dstt); | |
// const int n_past = ((int32_t *) dst->op_params)[0]; | |
const int n_dims = ((int32_t *) dst->op_params)[1]; | |
const int mode = ((int32_t *) dst->op_params)[2]; | |
// skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan | |
const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; | |
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; | |
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); | |
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); | |
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); | |
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); | |
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); | |
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); | |
ggml_vk_rope( | |
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_ctx_orig, | |
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, | |
ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3 | |
); | |
} break; | |
case GGML_OP_DUP: | |
case GGML_OP_CPY: | |
case GGML_OP_CONT: | |
{ | |
switch (src0t) { | |
case GGML_TYPE_F32: | |
{ | |
switch (dstt) { | |
case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; | |
case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; | |
default: goto not_implemented; | |
} | |
} break; | |
case GGML_TYPE_F16: | |
{ | |
switch (dstt) { | |
case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; | |
case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; | |
default: goto not_implemented; | |
} break; | |
default: goto not_implemented; | |
} | |
} | |
} break; | |
default: goto not_implemented; | |
} | |
continue; | |
not_implemented: {} | |
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); | |
//GGML_ABORT("fatal error"); | |
} | |
// Evaluate sequence | |
if (any_commands_recorded) { | |
seq.evalAsync(); | |
} | |
} | |
// Wait for all sequences to finish | |
for (auto& sequence : sequences) { | |
if (sequence->isRunning()) | |
sequence->evalAwait(); | |
} | |
ggml_vk_free_descriptor_pool(ctx); | |
} | |
template<> | |
kp::Tensor::TensorDataTypes | |
kp::TensorT<half>::dataType() | |
{ | |
return TensorDataTypes::eFloat; | |
} | |
template<> | |
kp::Tensor::TensorDataTypes | |
kp::TensorT<uint8_t>::dataType() | |
{ | |
return TensorDataTypes::eUnsignedInt; | |
} | |
//////////////////////////////////////////////////////////////////////////////// | |
// backend interface | |
struct ggml_backend_kompute_buffer_type_context { | |
int device; | |
int device_ref = 0; | |
uint64_t buffer_alignment; | |
uint64_t max_alloc; | |
std::string name; | |
ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc) | |
: device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {} | |
}; | |
static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) { | |
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); | |
if (!ctx->device_ref) { | |
komputeManager()->initializeDevice( | |
ctx->device, {}, { | |
"VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage", | |
"VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info" | |
} | |
); | |
} | |
assert(ggml_vk_has_device()); | |
ctx->device_ref++; | |
} | |
static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) { | |
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); | |
assert(ctx->device_ref > 0); | |
ctx->device_ref--; | |
if (!ctx->device_ref) { | |
komputeManager.destroy(); | |
} | |
} | |
static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) { | |
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context); | |
return ctx->name.c_str(); | |
} | |
static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) { | |
auto * memory = (ggml_vk_memory *)buffer->context; | |
if (ggml_vk_has_device()) { | |
ggml_vk_free_memory(*memory); | |
} | |
delete memory; | |
} | |
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) { | |
return ((ggml_vk_memory *)buffer->context)->data; | |
} | |
static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | |
GGML_UNUSED(buffer); | |
const auto res = ggml_vk_get_tensor(tensor); | |
GGML_ASSERT(res); | |
memcpy((char *)tensor->data + offset, data, size); | |
komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res}); | |
} | |
static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { | |
GGML_UNUSED(buffer); | |
const auto res = ggml_vk_get_tensor(tensor); | |
GGML_ASSERT(res); | |
komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res}); | |
memcpy(data, (const char *)tensor->data + offset, size); | |
} | |
static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { | |
auto * memory = (ggml_vk_memory *)buffer->context; | |
memset(memory->data, value, buffer->size); | |
if (memory->stagingBuffer) | |
komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size); | |
} | |
static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = { | |
/* .get_name = */ ggml_backend_kompute_buffer_get_name, | |
/* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer, | |
/* .get_base = */ ggml_backend_kompute_buffer_get_base, | |
/* .init_tensor = */ NULL, | |
/* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor, | |
/* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor, | |
/* .cpy_tensor = */ NULL, | |
/* .clear = */ ggml_backend_kompute_buffer_clear, | |
/* .reset = */ NULL, | |
}; | |
// default buffer type | |
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) { | |
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); | |
return ctx->name.c_str(); | |
} | |
static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { | |
ggml_backend_kompute_device_ref(buft); | |
auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size)); | |
return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size); | |
} | |
static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { | |
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); | |
return ctx->buffer_alignment; | |
} | |
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { | |
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context); | |
return ctx->max_alloc; | |
} | |
static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = { | |
/* .get_name = */ ggml_backend_kompute_buffer_type_get_name, | |
/* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer, | |
/* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment, | |
/* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size, | |
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes | |
/* .is_host = */ NULL, | |
}; | |
ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) { | |
static std::vector<ggml_backend_buffer_type> bufts = []() { | |
std::vector<ggml_backend_buffer_type> vec; | |
auto devices = ggml_vk_available_devices_internal(0); | |
vec.reserve(devices.size()); | |
for (const auto & dev : devices) { | |
vec.push_back({ | |
/* .iface = */ ggml_backend_kompute_buffer_type_interface, | |
/* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc) | |
}); | |
} | |
return vec; | |
}(); | |
auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) { | |
return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device; | |
}); | |
return it < bufts.end() ? &*it : nullptr; | |
} | |
// backend | |
static const char * ggml_backend_kompute_name(ggml_backend_t backend) { | |
auto * ctx = static_cast<ggml_kompute_context *>(backend->context); | |
return ctx->name.c_str(); | |
} | |
static void ggml_backend_kompute_free(ggml_backend_t backend) { | |
auto * ctx = static_cast<ggml_kompute_context *>(backend->context); | |
assert(ctx == s_kompute_context); | |
s_kompute_context = nullptr; | |
if (ctx != nullptr) { | |
delete ctx; | |
} | |
delete backend; | |
} | |
static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) { | |
auto * ctx = static_cast<ggml_kompute_context *>(backend->context); | |
return ggml_backend_kompute_buffer_type(ctx->device); | |
} | |
static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { | |
auto * ctx = static_cast<ggml_kompute_context *>(backend->context); | |
ggml_vk_graph_compute(ctx, cgraph); | |
return GGML_STATUS_SUCCESS; | |
} | |
static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { | |
GGML_UNUSED(backend); | |
return ggml_vk_supports_op(op); | |
} | |
static bool ggml_backend_kompute_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { | |
GGML_UNUSED(backend); | |
return buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name; | |
} | |
static struct ggml_backend_i kompute_backend_i = { | |
/* .get_name = */ ggml_backend_kompute_name, | |
/* .free = */ ggml_backend_kompute_free, | |
/* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type, | |
/* .set_tensor_async = */ NULL, | |
/* .get_tensor_async = */ NULL, | |
/* .cpy_tensor_async = */ NULL, | |
/* .synchronize = */ NULL, | |
/* .graph_plan_create = */ NULL, | |
/* .graph_plan_free = */ NULL, | |
/* .graph_plan_update = */ NULL, | |
/* .graph_plan_compute = */ NULL, | |
/* .graph_compute = */ ggml_backend_kompute_graph_compute, | |
/* .supports_op = */ ggml_backend_kompute_supports_op, | |
/* .supports_buft = */ ggml_backend_kompute_supports_buft, | |
/* .offload_op = */ NULL, | |
/* .event_new = */ NULL, | |
/* .event_free = */ NULL, | |
/* .event_record = */ NULL, | |
/* .event_wait = */ NULL, | |
/* .event_synchronize = */ NULL, | |
}; | |
static ggml_guid_t ggml_backend_kompute_guid() { | |
static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca }; | |
return &guid; | |
} | |
ggml_backend_t ggml_backend_kompute_init(int device) { | |
GGML_ASSERT(s_kompute_context == nullptr); | |
s_kompute_context = new ggml_kompute_context(device); | |
ggml_backend_t kompute_backend = new ggml_backend { | |
/* .guid = */ ggml_backend_kompute_guid(), | |
/* .interface = */ kompute_backend_i, | |
/* .context = */ s_kompute_context, | |
}; | |
return kompute_backend; | |
} | |
bool ggml_backend_is_kompute(ggml_backend_t backend) { | |
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid()); | |
} | |
static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) { | |
GGML_UNUSED(params); | |
return ggml_backend_kompute_init(intptr_t(user_data)); | |
} | |
extern "C" int ggml_backend_kompute_reg_devices(); | |
int ggml_backend_kompute_reg_devices() { | |
auto devices = ggml_vk_available_devices_internal(0); | |
for (const auto & device : devices) { | |
ggml_backend_register( | |
ggml_kompute_format_name(device.index).c_str(), | |
ggml_backend_reg_kompute_init, | |
ggml_backend_kompute_buffer_type(device.index), | |
reinterpret_cast<void *>(intptr_t(device.index)) | |
); | |
} | |
return devices.size(); | |
} | |