Spaces:
Sleeping
Sleeping
import argparse | |
import importlib.util | |
spec = importlib.util.spec_from_file_location('whisper_to_coreml', 'models/convert-whisper-to-coreml.py') | |
whisper_to_coreml = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(whisper_to_coreml) | |
from whisper import load_model | |
from copy import deepcopy | |
import torch | |
from transformers import WhisperForConditionalGeneration | |
from huggingface_hub import metadata_update | |
# https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py | |
WHISPER_MAPPING = { | |
"layers": "blocks", | |
"fc1": "mlp.0", | |
"fc2": "mlp.2", | |
"final_layer_norm": "mlp_ln", | |
"layers": "blocks", | |
".self_attn.q_proj": ".attn.query", | |
".self_attn.k_proj": ".attn.key", | |
".self_attn.v_proj": ".attn.value", | |
".self_attn_layer_norm": ".attn_ln", | |
".self_attn.out_proj": ".attn.out", | |
".encoder_attn.q_proj": ".cross_attn.query", | |
".encoder_attn.k_proj": ".cross_attn.key", | |
".encoder_attn.v_proj": ".cross_attn.value", | |
".encoder_attn_layer_norm": ".cross_attn_ln", | |
".encoder_attn.out_proj": ".cross_attn.out", | |
"decoder.layer_norm.": "decoder.ln.", | |
"encoder.layer_norm.": "encoder.ln_post.", | |
"embed_tokens": "token_embedding", | |
"encoder.embed_positions.weight": "encoder.positional_embedding", | |
"decoder.embed_positions.weight": "decoder.positional_embedding", | |
"layer_norm": "ln_post", | |
} | |
# https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py | |
def rename_keys(s_dict): | |
keys = list(s_dict.keys()) | |
for key in keys: | |
new_key = key | |
for k, v in WHISPER_MAPPING.items(): | |
if k in key: | |
new_key = new_key.replace(k, v) | |
print(f"{key} -> {new_key}") | |
s_dict[new_key] = s_dict.pop(key) | |
return s_dict | |
# https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py | |
def convert_hf_whisper(hf_model_name_or_path: str, whisper_state_path: str): | |
transformer_model = WhisperForConditionalGeneration.from_pretrained(hf_model_name_or_path) | |
config = transformer_model.config | |
# first build dims | |
dims = { | |
'n_mels': config.num_mel_bins, | |
'n_vocab': config.vocab_size, | |
'n_audio_ctx': config.max_source_positions, | |
'n_audio_state': config.d_model, | |
'n_audio_head': config.encoder_attention_heads, | |
'n_audio_layer': config.encoder_layers, | |
'n_text_ctx': config.max_target_positions, | |
'n_text_state': config.d_model, | |
'n_text_head': config.decoder_attention_heads, | |
'n_text_layer': config.decoder_layers | |
} | |
state_dict = deepcopy(transformer_model.model.state_dict()) | |
state_dict = rename_keys(state_dict) | |
torch.save({"dims": dims, "model_state_dict": state_dict}, whisper_state_path) | |
# Ported from models/convert-whisper-to-coreml.py | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-name", type=str, help="name of model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3)", required=True) | |
parser.add_argument("--model-path", type=str, help="path to the model (e.g. if published on HuggingFace: Oblivion208/whisper-tiny-cantonese)", required=True) | |
parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False) | |
parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False) | |
parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False) | |
args = parser.parse_args() | |
if args.model_name not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large-v1", "large-v2", "large-v3"]: | |
raise ValueError("Invalid model name") | |
pt_target_path = f"models/hf-{args.model_name}.pt" | |
convert_hf_whisper(args.model_path, pt_target_path) | |
whisper = load_model(pt_target_path).cpu() | |
hparams = whisper.dims | |
print(hparams) | |
if args.optimize_ane: | |
whisperANE = whisper_to_coreml.WhisperANE(hparams).eval() | |
whisperANE.load_state_dict(whisper.state_dict()) | |
encoder = whisperANE.encoder | |
decoder = whisperANE.decoder | |
else: | |
encoder = whisper.encoder | |
decoder = whisper.decoder | |
# Convert encoder | |
encoder = whisper_to_coreml.convert_encoder(hparams, encoder, quantize=args.quantize) | |
encoder.save(f"models/coreml-encoder-{args.model_name}.mlpackage") | |
if args.encoder_only is False: | |
# Convert decoder | |
decoder = whisper_to_coreml.convert_decoder(hparams, decoder, quantize=args.quantize) | |
decoder.save(f"models/coreml-decoder-{args.model_name}.mlpackage") | |
print("done converting") | |