Spaces:
Sleeping
Sleeping
# Convert Whisper transformer model from PyTorch to ggml format | |
# | |
# Usage: python convert-pt-to-ggml.py ~/.cache/whisper/medium.pt ~/path/to/repo/whisper/ ./models/whisper-medium | |
# | |
# You need to clone the original repo in ~/path/to/repo/whisper/ | |
# | |
# git clone https://github.com/openai/whisper ~/path/to/repo/whisper/ | |
# | |
# It is used to various assets needed by the algorithm: | |
# | |
# - tokenizer | |
# - mel filters | |
# | |
# Also, you need to have the original models in ~/.cache/whisper/ | |
# See the original repo for more details. | |
# | |
# This script loads the specified model and whisper assets and saves them in ggml format. | |
# The output is a single binary file containing the following information: | |
# | |
# - hparams | |
# - mel filters | |
# - tokenizer vocab | |
# - model variables | |
# | |
# For each variable, write the following: | |
# | |
# - Number of dimensions (int) | |
# - Name length (int) | |
# - Dimensions (int[n_dims]) | |
# - Name (char[name_length]) | |
# - Data (float[n_dims]) | |
# | |
import io | |
import os | |
import sys | |
import struct | |
import json | |
import code | |
import torch | |
import numpy as np | |
import base64 | |
from pathlib import Path | |
#from transformers import GPTJForCausalLM | |
#from transformers import GPT2TokenizerFast | |
# ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L10-L110 | |
#LANGUAGES = { | |
# "en": "english", | |
# "zh": "chinese", | |
# "de": "german", | |
# "es": "spanish", | |
# "ru": "russian", | |
# "ko": "korean", | |
# "fr": "french", | |
# "ja": "japanese", | |
# "pt": "portuguese", | |
# "tr": "turkish", | |
# "pl": "polish", | |
# "ca": "catalan", | |
# "nl": "dutch", | |
# "ar": "arabic", | |
# "sv": "swedish", | |
# "it": "italian", | |
# "id": "indonesian", | |
# "hi": "hindi", | |
# "fi": "finnish", | |
# "vi": "vietnamese", | |
# "iw": "hebrew", | |
# "uk": "ukrainian", | |
# "el": "greek", | |
# "ms": "malay", | |
# "cs": "czech", | |
# "ro": "romanian", | |
# "da": "danish", | |
# "hu": "hungarian", | |
# "ta": "tamil", | |
# "no": "norwegian", | |
# "th": "thai", | |
# "ur": "urdu", | |
# "hr": "croatian", | |
# "bg": "bulgarian", | |
# "lt": "lithuanian", | |
# "la": "latin", | |
# "mi": "maori", | |
# "ml": "malayalam", | |
# "cy": "welsh", | |
# "sk": "slovak", | |
# "te": "telugu", | |
# "fa": "persian", | |
# "lv": "latvian", | |
# "bn": "bengali", | |
# "sr": "serbian", | |
# "az": "azerbaijani", | |
# "sl": "slovenian", | |
# "kn": "kannada", | |
# "et": "estonian", | |
# "mk": "macedonian", | |
# "br": "breton", | |
# "eu": "basque", | |
# "is": "icelandic", | |
# "hy": "armenian", | |
# "ne": "nepali", | |
# "mn": "mongolian", | |
# "bs": "bosnian", | |
# "kk": "kazakh", | |
# "sq": "albanian", | |
# "sw": "swahili", | |
# "gl": "galician", | |
# "mr": "marathi", | |
# "pa": "punjabi", | |
# "si": "sinhala", | |
# "km": "khmer", | |
# "sn": "shona", | |
# "yo": "yoruba", | |
# "so": "somali", | |
# "af": "afrikaans", | |
# "oc": "occitan", | |
# "ka": "georgian", | |
# "be": "belarusian", | |
# "tg": "tajik", | |
# "sd": "sindhi", | |
# "gu": "gujarati", | |
# "am": "amharic", | |
# "yi": "yiddish", | |
# "lo": "lao", | |
# "uz": "uzbek", | |
# "fo": "faroese", | |
# "ht": "haitian creole", | |
# "ps": "pashto", | |
# "tk": "turkmen", | |
# "nn": "nynorsk", | |
# "mt": "maltese", | |
# "sa": "sanskrit", | |
# "lb": "luxembourgish", | |
# "my": "myanmar", | |
# "bo": "tibetan", | |
# "tl": "tagalog", | |
# "mg": "malagasy", | |
# "as": "assamese", | |
# "tt": "tatar", | |
# "haw": "hawaiian", | |
# "ln": "lingala", | |
# "ha": "hausa", | |
# "ba": "bashkir", | |
# "jw": "javanese", | |
# "su": "sundanese", | |
#} | |
## ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L273-L292 | |
#def build_tokenizer(path_to_whisper_repo: str, name: str = "gpt2"): | |
# os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# path = os.path.join(path_to_whisper_repo, "whisper/assets", name) | |
# tokenizer = GPT2TokenizerFast.from_pretrained(path) | |
# | |
# specials = [ | |
# "<|startoftranscript|>", | |
# *[f"<|{lang}|>" for lang in LANGUAGES.keys()], | |
# "<|translate|>", | |
# "<|transcribe|>", | |
# "<|startoflm|>", | |
# "<|startofprev|>", | |
# "<|nocaptions|>", | |
# "<|notimestamps|>", | |
# ] | |
# | |
# tokenizer.add_special_tokens(dict(additional_special_tokens=specials)) | |
# return tokenizer | |
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a signficant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8+n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
if len(sys.argv) < 4: | |
print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n") | |
sys.exit(1) | |
fname_inp = Path(sys.argv[1]) | |
dir_whisper = Path(sys.argv[2]) | |
dir_out = Path(sys.argv[3]) | |
# try to load PyTorch binary data | |
try: | |
model_bytes = open(fname_inp, "rb").read() | |
with io.BytesIO(model_bytes) as fp: | |
checkpoint = torch.load(fp, map_location="cpu") | |
except Exception: | |
print("Error: failed to load PyTorch model file:" , fname_inp) | |
sys.exit(1) | |
hparams = checkpoint["dims"] | |
print("hparams:", hparams) | |
list_vars = checkpoint["model_state_dict"] | |
#print(list_vars['encoder.positional_embedding']) | |
#print(list_vars['encoder.conv1.weight']) | |
#print(list_vars['encoder.conv1.weight'].shape) | |
# load mel filters | |
n_mels = hparams["n_mels"] | |
with np.load(dir_whisper / "whisper" / "assets" / "mel_filters.npz") as f: | |
filters = torch.from_numpy(f[f"mel_{n_mels}"]) | |
#print (filters) | |
#code.interact(local=locals()) | |
# load tokenizer | |
# for backwards compatibility, also check for older hf_transformers format tokenizer files | |
# old format: dir_whisper/whisper/assets/[multilingual/gpt2]/vocab.json | |
# new format: dir_whisper/whisper/assets/[multilingual/gpt2].tiktoken | |
multilingual = hparams["n_vocab"] >= 51865 | |
tokenizer = dir_whisper / "whisper" / "assets" / (multilingual and "multilingual.tiktoken" or "gpt2.tiktoken") | |
tokenizer_type = "tiktoken" | |
if not tokenizer.is_file(): | |
tokenizer = dir_whisper / "whisper" / "assets" / (multilingual and "multilingual" or "gpt2") / "vocab.json" | |
tokenizer_type = "hf_transformers" | |
if not tokenizer.is_file(): | |
print("Error: failed to find either tiktoken or hf_transformers tokenizer file:", tokenizer) | |
sys.exit(1) | |
byte_encoder = bytes_to_unicode() | |
byte_decoder = {v:k for k, v in byte_encoder.items()} | |
if tokenizer_type == "tiktoken": | |
with open(tokenizer, "rb") as f: | |
contents = f.read() | |
tokens = {base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line)} | |
elif tokenizer_type == "hf_transformers": | |
with open(tokenizer, "r", encoding="utf8") as f: | |
_tokens_raw = json.load(f) | |
if '<|endoftext|>' in _tokens_raw: | |
# ensures exact same model as tokenizer_type == tiktoken | |
# details: https://github.com/ggerganov/whisper.cpp/pull/725 | |
del _tokens_raw['<|endoftext|>'] | |
tokens = {bytes([byte_decoder[c] for c in token]): int(idx) for token, idx in _tokens_raw.items()} | |
# output in the same directory as the model | |
fname_out = dir_out / "ggml-model.bin" | |
# use 16-bit or 32-bit floats | |
use_f16 = True | |
if len(sys.argv) > 4: | |
use_f16 = False | |
fname_out = dir_out / "ggml-model-f32.bin" | |
fout = fname_out.open("wb") | |
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex | |
fout.write(struct.pack("i", hparams["n_vocab"])) | |
fout.write(struct.pack("i", hparams["n_audio_ctx"])) | |
fout.write(struct.pack("i", hparams["n_audio_state"])) | |
fout.write(struct.pack("i", hparams["n_audio_head"])) | |
fout.write(struct.pack("i", hparams["n_audio_layer"])) | |
fout.write(struct.pack("i", hparams["n_text_ctx"])) | |
fout.write(struct.pack("i", hparams["n_text_state"])) | |
fout.write(struct.pack("i", hparams["n_text_head"])) | |
fout.write(struct.pack("i", hparams["n_text_layer"])) | |
fout.write(struct.pack("i", hparams["n_mels"])) | |
fout.write(struct.pack("i", use_f16)) | |
# write mel filters | |
fout.write(struct.pack("i", filters.shape[0])) | |
fout.write(struct.pack("i", filters.shape[1])) | |
for i in range(filters.shape[0]): | |
for j in range(filters.shape[1]): | |
fout.write(struct.pack("f", filters[i][j])) | |
# write tokenizer | |
fout.write(struct.pack("i", len(tokens))) | |
for key in tokens: | |
fout.write(struct.pack("i", len(key))) | |
fout.write(key) | |
for name in list_vars.keys(): | |
data = list_vars[name].squeeze().numpy() | |
print("Processing variable: " , name , " with shape: ", data.shape) | |
# reshape conv bias from [n] to [n, 1] | |
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]: | |
data = data.reshape(data.shape[0], 1) | |
print(f" Reshaped variable: {name} to shape: ", data.shape) | |
n_dims = len(data.shape) | |
# looks like the whisper models are in f16 by default | |
# so we need to convert the small tensors to f32 until we fully support f16 in ggml | |
# ftype == 0 -> float32, ftype == 1 -> float16 | |
ftype = 1 | |
if use_f16: | |
if n_dims < 2 or \ | |
name == "encoder.conv1.bias" or \ | |
name == "encoder.conv2.bias" or \ | |
name == "encoder.positional_embedding" or \ | |
name == "decoder.positional_embedding": | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype = 0 | |
else: | |
data = data.astype(np.float32) | |
ftype = 0 | |
#if name.startswith("encoder"): | |
# if name.endswith("mlp.0.weight") or \ | |
# name.endswith("mlp.2.weight"): | |
# print(" Transposing") | |
# data = data.transpose() | |
# header | |
str_ = name.encode('utf-8') | |
fout.write(struct.pack("iii", n_dims, len(str_), ftype)) | |
for i in range(n_dims): | |
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) | |
fout.write(str_) | |
# data | |
data.tofile(fout) | |
fout.close() | |
print("Done. Output file: " , fname_out) | |
print("") | |