Spaces:
Sleeping
Sleeping
import struct | |
import torch | |
import numpy as np | |
from collections import OrderedDict | |
from pathlib import Path | |
import sys | |
if len(sys.argv) < 3: | |
print( | |
"Usage: convert-ggml-to-pt.py model.bin dir-output\n") | |
sys.exit(1) | |
fname_inp = Path(sys.argv[1]) | |
dir_out = Path(sys.argv[2]) | |
fname_out = dir_out / "torch-model.pt" | |
# Open the ggml file | |
with open(fname_inp, "rb") as f: | |
# Read magic number and hyperparameters | |
magic_number, n_vocab, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer, n_text_ctx, n_text_state, n_text_head, n_text_layer, n_mels, use_f16 = struct.unpack("12i", f.read(48)) | |
print(f"Magic number: {magic_number}") | |
print(f"Vocab size: {n_vocab}") | |
print(f"Audio context size: {n_audio_ctx}") | |
print(f"Audio state size: {n_audio_state}") | |
print(f"Audio head size: {n_audio_head}") | |
print(f"Audio layer size: {n_audio_layer}") | |
print(f"Text context size: {n_text_ctx}") | |
print(f"Text head size: {n_text_head}") | |
print(f"Mel size: {n_mels}") | |
# Read mel filters | |
# mel_filters = np.fromfile(f, dtype=np.float32, count=n_mels * 2).reshape(n_mels, 2) | |
# print(f"Mel filters: {mel_filters}") | |
filters_shape_0 = struct.unpack("i", f.read(4))[0] | |
print(f"Filters shape 0: {filters_shape_0}") | |
filters_shape_1 = struct.unpack("i", f.read(4))[0] | |
print(f"Filters shape 1: {filters_shape_1}") | |
# Read tokenizer tokens | |
# bytes = f.read(4) | |
# print(bytes) | |
# for i in range(filters.shape[0]): | |
# for j in range(filters.shape[1]): | |
# fout.write(struct.pack("f", filters[i][j])) | |
mel_filters = np.zeros((filters_shape_0, filters_shape_1)) | |
for i in range(filters_shape_0): | |
for j in range(filters_shape_1): | |
mel_filters[i][j] = struct.unpack("f", f.read(4))[0] | |
bytes_data = f.read(4) | |
num_tokens = struct.unpack("i", bytes_data)[0] | |
tokens = {} | |
for _ in range(num_tokens): | |
token_len = struct.unpack("i", f.read(4))[0] | |
token = f.read(token_len) | |
tokens[token] = {} | |
# Read model variables | |
model_state_dict = OrderedDict() | |
while True: | |
try: | |
n_dims, name_length, ftype = struct.unpack("iii", f.read(12)) | |
except struct.error: | |
break # End of file | |
dims = [struct.unpack("i", f.read(4))[0] for _ in range(n_dims)] | |
dims = dims[::-1] | |
name = f.read(name_length).decode("utf-8") | |
if ftype == 1: # f16 | |
data = np.fromfile(f, dtype=np.float16, count=np.prod(dims)).reshape(dims) | |
else: # f32 | |
data = np.fromfile(f, dtype=np.float32, count=np.prod(dims)).reshape(dims) | |
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]: | |
data = data[:, 0] | |
model_state_dict[name] = torch.from_numpy(data) | |
# Now you have the model's state_dict stored in model_state_dict | |
# You can load this state_dict into a model with the same architecture | |
# dims = ModelDimensions(**checkpoint["dims"]) | |
# model = Whisper(dims) | |
from whisper import Whisper, ModelDimensions | |
dims = ModelDimensions( | |
n_mels=n_mels, | |
n_audio_ctx=n_audio_ctx, | |
n_audio_state=n_audio_state, | |
n_audio_head=n_audio_head, | |
n_audio_layer=n_audio_layer, | |
n_text_ctx=n_text_ctx, | |
n_text_state=n_text_state, | |
n_text_head=n_text_head, | |
n_text_layer=n_text_layer, | |
n_vocab=n_vocab, | |
) | |
model = Whisper(dims) # Replace with your model's class | |
model.load_state_dict(model_state_dict) | |
# Save the model in PyTorch format | |
torch.save(model.state_dict(), fname_out) | |