#include "whisper.h" #ifdef WHISPER_USE_COREML #include "coreml/whisper-encoder.h" #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #ifdef GGML_USE_CUDA #include "ggml-cuda.h" #include "whisper-mel-cuda.hpp" #endif #ifdef GGML_USE_SYCL #include "ggml-sycl.h" #endif #ifdef GGML_USE_VULKAN #include "ggml-vulkan.h" #endif #ifdef GGML_USE_BLAS #include "ggml-blas.h" #endif #ifdef WHISPER_USE_OPENVINO #include "openvino/whisper-openvino-encoder.h" #endif #ifdef GGML_USE_CANN #include "ggml-cann.h" #endif #include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" #include "whisper-mel.hpp" #include #include #include #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #if defined(GGML_BIG_ENDIAN) #include template static T byteswap(T value) { return std::byteswap(value); } template<> float byteswap(float value) { return std::bit_cast(byteswap(std::bit_cast(value))); } template static void byteswap_tensor_data(ggml_tensor * tensor) { T * datum = reinterpret_cast(tensor->data); for (int i = 0; i < ggml_nelements(tensor); i++) { datum[i] = byteswap(datum[i]); } } static void byteswap_tensor(ggml_tensor * tensor) { switch (tensor->type) { case GGML_TYPE_I16: { byteswap_tensor_data(tensor); break; } case GGML_TYPE_F16: { byteswap_tensor_data(tensor); break; } case GGML_TYPE_I32: { byteswap_tensor_data(tensor); break; } case GGML_TYPE_F32: { byteswap_tensor_data(tensor); break; } default: { // GML_TYPE_I8 break; } } } #define BYTESWAP_VALUE(d) d = byteswap(d) #define BYTESWAP_FILTERS(f) \ do { \ for (auto & datum : f.data) { \ datum = byteswap(datum); \ } \ } while (0) #define BYTESWAP_TENSOR(t) \ do { \ byteswap_tensor(t); \ } while (0) #else #define BYTESWAP_VALUE(d) do {} while (0) #define BYTESWAP_FILTERS(f) do {} while (0) #define BYTESWAP_TENSOR(t) do {} while (0) #endif #ifdef __GNUC__ #ifdef __MINGW32__ #define WHISPER_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) #else #define WHISPER_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) #endif #else #define WHISPER_ATTRIBUTE_FORMAT(...) #endif // // logging // WHISPER_ATTRIBUTE_FORMAT(2, 3) static void whisper_log_internal (ggml_log_level level, const char * format, ...); static void whisper_log_callback_default(ggml_log_level level, const char * text, void * user_data); #define WHISPER_LOG_ERROR(...) whisper_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) #define WHISPER_LOG_WARN(...) whisper_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) #define WHISPER_LOG_INFO(...) whisper_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) // define this to enable verbose trace logging - useful for debugging purposes //#define WHISPER_DEBUG #if defined(WHISPER_DEBUG) #define WHISPER_LOG_DEBUG(...) whisper_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__) #else #define WHISPER_LOG_DEBUG(...) #endif #define WHISPER_ASSERT(x) \ do { \ if (!(x)) { \ WHISPER_LOG_ERROR("WHISPER_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ abort(); \ } \ } while (0) //#define WHISPER_USE_FLASH_FF #define WHISPER_MAX_DECODERS 8 #define WHISPER_MAX_NODES 4096 // // ggml helpers // static bool ggml_graph_compute_helper( struct ggml_cgraph * graph, std::vector & buf, int n_threads, ggml_abort_callback abort_callback, void * abort_callback_data) { struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); plan.abort_callback = abort_callback; plan.abort_callback_data = abort_callback_data; if (plan.work_size > 0) { buf.resize(plan.work_size); plan.work_data = buf.data(); } return ggml_graph_compute(graph, &plan); } static bool ggml_graph_compute_helper( ggml_backend_sched_t sched, struct ggml_cgraph * graph, int n_threads) { for (int i = 0; i < ggml_backend_sched_get_n_backends(sched); ++i) { ggml_backend_t backend = ggml_backend_sched_get_backend(sched, i); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } #ifdef GGML_USE_BLAS if (ggml_backend_is_blas(backend)) { ggml_backend_blas_set_n_threads(backend, n_threads); } #endif #ifdef GGML_USE_METAL if (ggml_backend_is_metal(backend)) { ggml_backend_metal_set_n_cb(backend, n_threads); } #endif } bool t = ggml_backend_sched_graph_compute(sched, graph) == GGML_STATUS_SUCCESS; ggml_backend_sched_reset(sched); return t; } // faster matrix multiplications for tensors that do not have dimension 0 divisible by "pad" // the idea is to represent the original matrix multiplication: // // Z = X @ Y // // with the sum of two matrix multiplications: // // Z = (X_0 @ Y_0) + (X_1 @ Y_1) // // here X_0 and Y_0 are views of X and Y that have dimension 0 divisible by "pad" // and X_1 and Y_1 are the remaining views. X_1 and Y_1 end up being small matrices that can be processed with more // general-purpose kernels // static struct ggml_tensor * ggml_mul_mat_pad(struct ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * y, int pad = 32) { // use padding only if dimension 0 is at least 8 times larger than the padding // else we won't get much benefit from the optimization const int n_pad_req = 8; if (x->ne[0] % pad == 0 || x->ne[0] / pad < n_pad_req) { return ggml_mul_mat(ctx, x, y); } struct ggml_tensor * x_0 = ggml_view_3d(ctx, x, (x->ne[0]/pad)*pad, x->ne[1], x->ne[2], x->nb[1], x->nb[2], 0); struct ggml_tensor * x_1 = ggml_view_3d(ctx, x, x->ne[0]%pad, x->ne[1], x->ne[2], x->nb[1], x->nb[2], x_0->ne[0]*x_0->nb[0]); struct ggml_tensor * y_0 = ggml_view_3d(ctx, y, (y->ne[0]/pad)*pad, y->ne[1], y->ne[2], y->nb[1], y->nb[2], 0); struct ggml_tensor * y_1 = ggml_view_3d(ctx, y, y->ne[0]%pad, y->ne[1], y->ne[2], y->nb[1], y->nb[2], y_0->ne[0]*y_0->nb[0]); return ggml_add(ctx, ggml_mul_mat(ctx, x_0, y_0), ggml_mul_mat(ctx, x_1, y_1)); } // TODO: check if other platforms can benefit from this optimization // TODO: CUDA is currently broken - seems ggml_mul_mat does not handle views correctly #if defined(GGML_USE_METAL) #define ggml_mul_mat ggml_mul_mat_pad #endif // available whisper models enum e_model { MODEL_UNKNOWN, MODEL_TINY, MODEL_BASE, MODEL_SMALL, MODEL_MEDIUM, MODEL_LARGE, }; static const std::map g_model_name = { { MODEL_UNKNOWN, "unknown" }, { MODEL_TINY, "tiny" }, { MODEL_BASE, "base" }, { MODEL_SMALL, "small" }, { MODEL_MEDIUM, "medium" }, { MODEL_LARGE, "large" }, }; static const std::map> g_lang = { { "en", { 0, "english", } }, { "zh", { 1, "chinese", } }, { "de", { 2, "german", } }, { "es", { 3, "spanish", } }, { "ru", { 4, "russian", } }, { "ko", { 5, "korean", } }, { "fr", { 6, "french", } }, { "ja", { 7, "japanese", } }, { "pt", { 8, "portuguese", } }, { "tr", { 9, "turkish", } }, { "pl", { 10, "polish", } }, { "ca", { 11, "catalan", } }, { "nl", { 12, "dutch", } }, { "ar", { 13, "arabic", } }, { "sv", { 14, "swedish", } }, { "it", { 15, "italian", } }, { "id", { 16, "indonesian", } }, { "hi", { 17, "hindi", } }, { "fi", { 18, "finnish", } }, { "vi", { 19, "vietnamese", } }, { "he", { 20, "hebrew", } }, { "uk", { 21, "ukrainian", } }, { "el", { 22, "greek", } }, { "ms", { 23, "malay", } }, { "cs", { 24, "czech", } }, { "ro", { 25, "romanian", } }, { "da", { 26, "danish", } }, { "hu", { 27, "hungarian", } }, { "ta", { 28, "tamil", } }, { "no", { 29, "norwegian", } }, { "th", { 30, "thai", } }, { "ur", { 31, "urdu", } }, { "hr", { 32, "croatian", } }, { "bg", { 33, "bulgarian", } }, { "lt", { 34, "lithuanian", } }, { "la", { 35, "latin", } }, { "mi", { 36, "maori", } }, { "ml", { 37, "malayalam", } }, { "cy", { 38, "welsh", } }, { "sk", { 39, "slovak", } }, { "te", { 40, "telugu", } }, { "fa", { 41, "persian", } }, { "lv", { 42, "latvian", } }, { "bn", { 43, "bengali", } }, { "sr", { 44, "serbian", } }, { "az", { 45, "azerbaijani", } }, { "sl", { 46, "slovenian", } }, { "kn", { 47, "kannada", } }, { "et", { 48, "estonian", } }, { "mk", { 49, "macedonian", } }, { "br", { 50, "breton", } }, { "eu", { 51, "basque", } }, { "is", { 52, "icelandic", } }, { "hy", { 53, "armenian", } }, { "ne", { 54, "nepali", } }, { "mn", { 55, "mongolian", } }, { "bs", { 56, "bosnian", } }, { "kk", { 57, "kazakh", } }, { "sq", { 58, "albanian", } }, { "sw", { 59, "swahili", } }, { "gl", { 60, "galician", } }, { "mr", { 61, "marathi", } }, { "pa", { 62, "punjabi", } }, { "si", { 63, "sinhala", } }, { "km", { 64, "khmer", } }, { "sn", { 65, "shona", } }, { "yo", { 66, "yoruba", } }, { "so", { 67, "somali", } }, { "af", { 68, "afrikaans", } }, { "oc", { 69, "occitan", } }, { "ka", { 70, "georgian", } }, { "be", { 71, "belarusian", } }, { "tg", { 72, "tajik", } }, { "sd", { 73, "sindhi", } }, { "gu", { 74, "gujarati", } }, { "am", { 75, "amharic", } }, { "yi", { 76, "yiddish", } }, { "lo", { 77, "lao", } }, { "uz", { 78, "uzbek", } }, { "fo", { 79, "faroese", } }, { "ht", { 80, "haitian creole", } }, { "ps", { 81, "pashto", } }, { "tk", { 82, "turkmen", } }, { "nn", { 83, "nynorsk", } }, { "mt", { 84, "maltese", } }, { "sa", { 85, "sanskrit", } }, { "lb", { 86, "luxembourgish", } }, { "my", { 87, "myanmar", } }, { "bo", { 88, "tibetan", } }, { "tl", { 89, "tagalog", } }, { "mg", { 90, "malagasy", } }, { "as", { 91, "assamese", } }, { "tt", { 92, "tatar", } }, { "haw", { 93, "hawaiian", } }, { "ln", { 94, "lingala", } }, { "ha", { 95, "hausa", } }, { "ba", { 96, "bashkir", } }, { "jw", { 97, "javanese", } }, { "su", { 98, "sundanese", } }, { "yue", { 99, "cantonese", } }, }; // [EXPERIMENTAL] Token-level timestamps with DTW static const whisper_ahead g_aheads_tiny_en[] = { {1, 0}, {2, 0}, {2, 5}, {3, 0}, {3, 1}, {3, 2}, {3, 3}, {3, 4} }; static const whisper_ahead g_aheads_tiny[] = { {2, 2}, {3, 0}, {3, 2}, {3, 3}, {3, 4}, {3, 5} }; static const whisper_ahead g_aheads_base_en[] = { {3, 3}, {4, 7}, {5, 1}, {5, 5}, {5, 7} }; static const whisper_ahead g_aheads_base[] = { {3, 1}, {4, 2}, {4, 3}, {4, 7}, {5, 1}, {5, 2}, {5, 4}, {5, 6} }; static const whisper_ahead g_aheads_small_en[] = { {6, 6}, {7, 0}, {7, 3}, {7, 8}, {8, 2}, {8, 5}, {8, 7}, {9, 0}, {9, 4}, {9, 8}, {9, 10}, {10, 0}, {10, 1}, {10, 2}, {10, 3}, {10, 6}, {10, 11}, {11, 2}, {11, 4} }; static const whisper_ahead g_aheads_small[] = { {5, 3}, {5, 9}, {8, 0}, {8, 4}, {8, 7}, {8, 8}, {9, 0}, {9, 7}, {9, 9}, {10, 5} }; static const whisper_ahead g_aheads_medium_en[] = { {11, 4}, {14, 1}, {14, 12}, {14, 14}, {15, 4}, {16, 0}, {16, 4}, {16, 9}, {17, 12}, {17, 14}, {18, 7}, {18, 10}, {18, 15}, {20, 0}, {20, 3}, {20, 9}, {20, 14}, {21, 12} }; static const whisper_ahead g_aheads_medium[] = { {13, 15}, {15, 4}, {15, 15}, {16, 1}, {20, 0}, {23, 4} }; static const whisper_ahead g_aheads_large_v1[] = { {9, 19}, {11, 2}, {11, 4}, {11, 17}, {22, 7}, {22, 11}, {22, 17}, {23, 2}, {23, 15} }; static const whisper_ahead g_aheads_large_v2[] = { {10, 12}, {13, 17}, {16, 11}, {16, 12}, {16, 13}, {17, 15}, {17, 16}, {18, 4}, {18, 11}, {18, 19}, {19, 11}, {21, 2}, {21, 3}, {22, 3}, {22, 9}, {22, 12}, {23, 5}, {23, 7}, {23, 13}, {25, 5}, {26, 1}, {26, 12}, {27, 15} }; static const whisper_ahead g_aheads_large_v3[] = { {7, 0}, {10, 17}, {12, 18}, {13, 12}, {16, 1}, {17, 14}, {19, 11}, {21, 4}, {24, 1}, {25, 6} }; static const std::map g_aheads { { WHISPER_AHEADS_TINY_EN, { 8, g_aheads_tiny_en } }, { WHISPER_AHEADS_TINY, { 6, g_aheads_tiny } }, { WHISPER_AHEADS_BASE_EN, { 5, g_aheads_base_en } }, { WHISPER_AHEADS_BASE, { 8, g_aheads_base } }, { WHISPER_AHEADS_SMALL_EN, { 19, g_aheads_small_en } }, { WHISPER_AHEADS_SMALL, { 10, g_aheads_small } }, { WHISPER_AHEADS_MEDIUM_EN, { 18, g_aheads_medium_en } }, { WHISPER_AHEADS_MEDIUM, { 6, g_aheads_medium } }, { WHISPER_AHEADS_LARGE_V1, { 9, g_aheads_large_v1 } }, { WHISPER_AHEADS_LARGE_V2, { 23, g_aheads_large_v2 } }, { WHISPER_AHEADS_LARGE_V3, { 10, g_aheads_large_v3 } }, }; static std::vector get_alignment_heads_by_layer(const whisper_context_params & cparams, int il, int32_t n_text_layer, int32_t n_head); struct whisper_vocab { using id = int32_t; using token = std::string; int n_vocab = 51864; std::map token_to_id; std::map id_to_token; // reference: https://github.com/openai/whisper/blob/248b6cb124225dd263bb9bd32d060b6517e067f8/whisper/tokenizer.py#L334-L349 id token_eot = 50256; id token_sot = 50257; // task tokens (used only for multilingual models) id token_translate = 50357; id token_transcribe = 50358; // other special tokens id token_solm = 50359; // [TDRZ] used by tinydiarize models to indicate speaker turn id token_prev = 50360; id token_nosp = 50361; id token_not = 50362; // no timestamps id token_beg = 50363; // begin timestamps bool is_multilingual() const { return n_vocab >= 51865; } int num_languages() const { return n_vocab - 51765 - (is_multilingual() ? 1 : 0); } }; struct whisper_segment { int64_t t0; int64_t t1; std::string text; std::vector tokens; bool speaker_turn_next; }; struct whisper_batch { int32_t n_tokens; whisper_token * token; whisper_pos * pos; int32_t * n_seq_id; // always 1, here for consistency with llama.cpp whisper_seq_id ** seq_id; // null terminated int8_t * logits; }; static struct whisper_batch whisper_batch_init(int32_t n_tokens, int32_t n_seq_max) { whisper_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, }; batch.token = (whisper_token * ) malloc(sizeof(whisper_token) * (n_tokens)); batch.pos = (whisper_pos *) malloc(sizeof(whisper_pos) * (n_tokens)); batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * (n_tokens)); batch.seq_id = (whisper_seq_id **) malloc(sizeof(whisper_seq_id *) * (n_tokens + 1)); for (int i = 0; i < n_tokens; ++i) { batch.seq_id[i] = (whisper_seq_id *) malloc(sizeof(whisper_seq_id) * n_seq_max); } batch.seq_id[n_tokens] = nullptr; batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens); return batch; } static void whisper_batch_free(struct whisper_batch batch) { if (batch.token) free(batch.token); if (batch.pos) free(batch.pos); if (batch.n_seq_id) free(batch.n_seq_id); if (batch.seq_id) { for (int i = 0; batch.seq_id[i]; ++i) { free(batch.seq_id[i]); } free(batch.seq_id); } if (batch.logits) free(batch.logits); } static void whisper_batch_prep_legacy(whisper_batch & batch, const whisper_token * tokens, int n_tokens, int n_past, int seq_id) { batch.n_tokens = n_tokens; for (int i = 0; i < n_tokens; ++i) { if (tokens) { batch.token[i] = tokens[i]; } batch.pos [i] = n_past + i; batch.n_seq_id[i] = 1; batch.seq_id [i][0] = seq_id; batch.logits [i] = 0; } batch.logits[n_tokens - 1] = 1; } // replace std::pair by using customized pair struct (reason: std::pair is very slow) template struct whisper_pair { A first; B second; // Define a constructor that takes two arguments. whisper_pair(const A& a, const B& b) : first(a), second(b) {} // Define a constructor that takes no argument. whisper_pair() : first(A()), second(B()) {} }; // ggml_backend_sched wrapper for whisper usage struct whisper_sched { ggml_backend_sched_t sched = nullptr; std::vector meta; }; static size_t whisper_sched_size(struct whisper_sched & allocr) { size_t size = allocr.meta.size(); for (int i = 0; i < ggml_backend_sched_get_n_backends(allocr.sched); ++i) { ggml_backend_t backend = ggml_backend_sched_get_backend(allocr.sched, i); size += ggml_backend_sched_get_buffer_size(allocr.sched, backend); } return size; } // measure the memory usage of a graph and prepare the allocr's internal data buffer static bool whisper_sched_graph_init(struct whisper_sched & allocr, std::vector backends, std::function && get_graph) { auto & sched = allocr.sched; auto & meta = allocr.meta; sched = ggml_backend_sched_new(backends.data(), nullptr, backends.size(), WHISPER_MAX_NODES, false); meta.resize(ggml_tensor_overhead()*WHISPER_MAX_NODES + ggml_graph_overhead()); // since there are dependencies between the different graphs, // we need to allocate them instead of only reserving to get the correct compute buffer size if (!ggml_backend_sched_alloc_graph(sched, get_graph())) { // failed to allocate the compute buffer WHISPER_LOG_ERROR("%s: failed to allocate the compute buffer\n", __func__); return false; } ggml_backend_sched_reset(sched); return true; } // medium // hparams: { // 'n_mels': 80, // 'n_vocab': 51864, // 'n_audio_ctx': 1500, // 'n_audio_state': 1024, // 'n_audio_head': 16, // 'n_audio_layer': 24, // 'n_text_ctx': 448, // 'n_text_state': 1024, // 'n_text_head': 16, // 'n_text_layer': 24 // } // // default hparams (Whisper tiny) struct whisper_hparams { int32_t n_vocab = 51864; int32_t n_audio_ctx = 1500; int32_t n_audio_state = 384; int32_t n_audio_head = 6; int32_t n_audio_layer = 4; int32_t n_text_ctx = 448; int32_t n_text_state = 384; int32_t n_text_head = 6; int32_t n_text_layer = 4; int32_t n_mels = 80; int32_t ftype = 1; float eps = 1e-5f; }; // audio encoding layer struct whisper_layer_encoder { // encoder.blocks.*.attn_ln struct ggml_tensor * attn_ln_0_w; struct ggml_tensor * attn_ln_0_b; // encoder.blocks.*.attn.out struct ggml_tensor * attn_ln_1_w; struct ggml_tensor * attn_ln_1_b; // encoder.blocks.*.attn.query struct ggml_tensor * attn_q_w; struct ggml_tensor * attn_q_b; // encoder.blocks.*.attn.key struct ggml_tensor * attn_k_w; // encoder.blocks.*.attn.value struct ggml_tensor * attn_v_w; struct ggml_tensor * attn_v_b; // encoder.blocks.*.mlp_ln struct ggml_tensor * mlp_ln_w; struct ggml_tensor * mlp_ln_b; // encoder.blocks.*.mlp.0 struct ggml_tensor * mlp_0_w; struct ggml_tensor * mlp_0_b; // encoder.blocks.*.mlp.2 struct ggml_tensor * mlp_1_w; struct ggml_tensor * mlp_1_b; }; // token decoding layer struct whisper_layer_decoder { // decoder.blocks.*.attn_ln struct ggml_tensor * attn_ln_0_w; struct ggml_tensor * attn_ln_0_b; // decoder.blocks.*.attn.out struct ggml_tensor * attn_ln_1_w; struct ggml_tensor * attn_ln_1_b; // decoder.blocks.*.attn.query struct ggml_tensor * attn_q_w; struct ggml_tensor * attn_q_b; // decoder.blocks.*.attn.key struct ggml_tensor * attn_k_w; // decoder.blocks.*.attn.value struct ggml_tensor * attn_v_w; struct ggml_tensor * attn_v_b; // decoder.blocks.*.cross_attn_ln struct ggml_tensor * cross_attn_ln_0_w; struct ggml_tensor * cross_attn_ln_0_b; // decoder.blocks.*.cross_attn.out struct ggml_tensor * cross_attn_ln_1_w; struct ggml_tensor * cross_attn_ln_1_b; // decoder.blocks.*.cross_attn.query struct ggml_tensor * cross_attn_q_w; struct ggml_tensor * cross_attn_q_b; // decoder.blocks.*.cross_attn.key struct ggml_tensor * cross_attn_k_w; // decoder.blocks.*.cross_attn.value struct ggml_tensor * cross_attn_v_w; struct ggml_tensor * cross_attn_v_b; // decoder.blocks.*.mlp_ln struct ggml_tensor * mlp_ln_w; struct ggml_tensor * mlp_ln_b; // decoder.blocks.*.mlp.0 struct ggml_tensor * mlp_0_w; struct ggml_tensor * mlp_0_b; // decoder.blocks.*.mlp.2 struct ggml_tensor * mlp_1_w; struct ggml_tensor * mlp_1_b; }; struct whisper_kv_cell { whisper_pos pos = -1; std::set seq_id; bool has_seq_id(const whisper_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } }; struct whisper_kv_cache { uint32_t head = 0; uint32_t size = 0; // computed before each graph build uint32_t n = 0; std::vector cells; struct ggml_tensor * k; struct ggml_tensor * v; struct ggml_context * ctx = nullptr; ggml_backend_buffer_t buffer = nullptr; }; struct whisper_model { e_model type = MODEL_UNKNOWN; whisper_hparams hparams; whisper_filters filters; // encoder.positional_embedding struct ggml_tensor * e_pe; // encoder.conv1 struct ggml_tensor * e_conv_1_w; struct ggml_tensor * e_conv_1_b; // encoder.conv2 struct ggml_tensor * e_conv_2_w; struct ggml_tensor * e_conv_2_b; // encoder.ln_post struct ggml_tensor * e_ln_w; struct ggml_tensor * e_ln_b; // decoder.positional_embedding struct ggml_tensor * d_pe; // decoder.token_embedding struct ggml_tensor * d_te; // decoder.ln struct ggml_tensor * d_ln_w; struct ggml_tensor * d_ln_b; std::vector layers_encoder; std::vector layers_decoder; // ggml context that contains all the meta information about the model tensors struct ggml_context * ctx = nullptr; // the model backend data is read-only and can be shared between processors ggml_backend_buffer_t buffer = nullptr; // tensors int n_loaded; std::map tensors; }; struct whisper_partial_utf8 { uint32_t value; // bit value so far (unshifted) int n_remain; // num bytes remaining; -1 indicates invalid sequence }; struct whisper_grammar { /*const*/ std::vector> rules; std::vector> stacks; // buffer for partially generated UTF-8 sequence from accepted tokens whisper_partial_utf8 partial_utf8; }; struct whisper_grammar_candidate { whisper_token id; const uint32_t * code_points; whisper_partial_utf8 partial_utf8; }; struct whisper_sequence { std::vector tokens; // the accumulated transcription in the current iteration (used to truncate the tokens array) int result_len; double sum_logprobs_all; // the sum of the log probabilities of the tokens double sum_logprobs; // the sum of the log probabilities of the tokens (first result_len tokens) double avg_logprobs; // the average log probability of the tokens double entropy; // the entropy of the tokens double score; // likelihood rank score }; // TAGS: WHISPER_DECODER_INIT struct whisper_decoder { // the currently generated sequence of tokens whisper_sequence sequence; // grammar parse state of generated sequence of tokens whisper_grammar grammar; int i_batch; // the index of the token in the current batch int seek_delta; // the window shift found so far based on the decoded timestamp tokens bool failed; // has the current segment failed to decode? bool completed; // has the decoder completed the current segment? bool has_ts; // have we already sampled a non-beg timestamp token for the current segment? // new token probs, logits and logprobs after the last whisper_decode (1-dimensional array: [n_vocab]) std::vector probs; std::vector logits; std::vector logprobs; // work container used to avoid memory allocations std::vector> logits_id; mutable std::mt19937 rng; // used for sampling at t > 0.0 }; // [EXPERIMENTAL] Token-level timestamps with DTW struct whisper_aheads_masks { std::vector m; // One mask per text layer. struct ggml_context * ctx = nullptr; ggml_backend_buffer_t buffer = nullptr; }; struct whisper_state { int64_t t_sample_us = 0; int64_t t_encode_us = 0; int64_t t_decode_us = 0; int64_t t_batchd_us = 0; int64_t t_prompt_us = 0; int64_t t_mel_us = 0; int32_t n_sample = 0; // number of tokens sampled int32_t n_encode = 0; // number of encoder calls int32_t n_decode = 0; // number of decoder calls with n_tokens == 1 (text-generation) int32_t n_batchd = 0; // number of decoder calls with n_tokens < 16 (batch decoding) int32_t n_prompt = 0; // number of decoder calls with n_tokens > 1 (prompt encoding) int32_t n_fail_p = 0; // number of logprob threshold failures int32_t n_fail_h = 0; // number of entropy threshold failures // unified self-attention KV cache for all decoders whisper_kv_cache kv_self; // cross-attention KV cache for the decoders // shared between all decoders whisper_kv_cache kv_cross; // padded buffer for flash-attention whisper_kv_cache kv_pad; whisper_mel mel; whisper_mel_calc * mel_calc = nullptr; whisper_mel_calc * mel_calc_fallback = nullptr; whisper_batch batch; whisper_decoder decoders[WHISPER_MAX_DECODERS]; std::vector backends; // - stores meta info about the intermediate tensors into the `meta` buffers whisper_sched sched_conv; whisper_sched sched_encode; whisper_sched sched_cross; whisper_sched sched_decode; // result of the encoder struct ggml_tensor * embd_conv = nullptr; struct ggml_tensor * embd_enc = nullptr; // helpers for GPU offloading std::vector inp_mask; // decode output (2-dimensional array: [n_tokens][n_vocab]) std::vector logits; std::vector result_all; std::vector prompt_past; int lang_id = 0; // english by default std::string path_model; // populated by whisper_init_from_file_with_params() #ifdef WHISPER_USE_COREML whisper_coreml_context * ctx_coreml = nullptr; #endif #ifdef WHISPER_USE_OPENVINO whisper_openvino_context * ctx_openvino = nullptr; #endif // [EXPERIMENTAL] token-level timestamps data int64_t t_beg = 0; int64_t t_last = 0; whisper_token tid_last; std::vector energy; // PCM signal energy // [EXPERIMENTAL] Token-level timestamps with DTW whisper_aheads_masks aheads_masks; ggml_tensor * aheads_cross_QKs = nullptr; std::vector aheads_cross_QKs_data; // [EXPERIMENTAL] speed-up techniques int32_t exp_n_audio_ctx = 0; // 0 - use default }; struct whisper_context { int64_t t_load_us = 0; int64_t t_start_us = 0; ggml_type wtype = ggml_type::GGML_TYPE_F16; // weight type (FP32 / FP16 / QX) ggml_type itype = ggml_type::GGML_TYPE_F16; // intermediate type (FP32 or FP16) whisper_context_params params; whisper_model model; whisper_vocab vocab; whisper_state * state = nullptr; std::string path_model; // populated by whisper_init_from_file_with_params() }; struct whisper_global { // We save the log callback globally ggml_log_callback log_callback = whisper_log_callback_default; void * log_callback_user_data = nullptr; }; static whisper_global g_state; template static void read_safe(whisper_model_loader * loader, T & dest) { loader->read(loader->context, &dest, sizeof(T)); BYTESWAP_VALUE(dest); } static bool whisper_kv_cache_init( struct whisper_kv_cache & cache, ggml_backend_t backend, ggml_type wtype, int64_t n_text_state, int64_t n_text_layer, int n_ctx) { const int64_t n_mem = n_text_layer*n_ctx; const int64_t n_elements = n_text_state*n_mem; struct ggml_init_params params = { /*.mem_size =*/ 2*ggml_tensor_overhead(), /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; cache.head = 0; cache.size = n_ctx; cache.cells.clear(); cache.cells.resize(n_ctx); cache.ctx = ggml_init(params); if (!cache.ctx) { WHISPER_LOG_ERROR("%s: failed to allocate memory for the kv cache context\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.buffer = ggml_backend_alloc_ctx_tensors(cache.ctx, backend); if (!cache.buffer) { WHISPER_LOG_ERROR("%s: failed to allocate memory for the kv cache\n", __func__); return false; } ggml_backend_buffer_clear(cache.buffer, 0); return true; } static void whisper_kv_cache_free(struct whisper_kv_cache & cache) { ggml_free(cache.ctx); ggml_backend_buffer_free(cache.buffer); cache.ctx = nullptr; } static bool whisper_kv_cache_find_slot( struct whisper_kv_cache & cache, const struct whisper_batch & batch) { const uint32_t n_ctx = cache.size; const uint32_t n_tokens = batch.n_tokens; if (n_tokens > n_ctx) { WHISPER_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx); return false; } uint32_t n_tested = 0; while (true) { if (cache.head + n_tokens > n_ctx) { n_tested += n_ctx - cache.head; cache.head = 0; continue; } bool found = true; for (uint32_t i = 0; i < n_tokens; i++) { if (cache.cells[cache.head + i].pos >= 0) { found = false; cache.head += i + 1; n_tested += i + 1; break; } } if (found) { break; } if (n_tested >= n_ctx) { //WHISPER_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); return false; } } for (uint32_t i = 0; i < n_tokens; i++) { cache.cells[cache.head + i].pos = batch.pos[i]; for (int32_t j = 0; j < batch.n_seq_id[i]; j++) { cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]); } } return true; } // find how many cells are currently in use static int32_t whisper_kv_cache_cell_max(const struct whisper_kv_cache & cache) { for (uint32_t i = cache.size - 1; i > 0; --i) { if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) { return i + 1; } } return 1; } static void whisper_kv_cache_clear(struct whisper_kv_cache & cache) { for (int32_t i = 0; i < (int32_t) cache.size; ++i) { cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); } cache.head = 0; } static void whisper_kv_cache_seq_rm( struct whisper_kv_cache & cache, whisper_seq_id seq_id, whisper_pos p0, whisper_pos p1) { uint32_t new_head = cache.size; if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { if (seq_id < 0) { cache.cells[i].seq_id.clear(); } else if (cache.cells[i].has_seq_id(seq_id)) { cache.cells[i].seq_id.erase(seq_id); } else { continue; } if (cache.cells[i].seq_id.empty()) { cache.cells[i].pos = -1; if (new_head == cache.size) new_head = i; } } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cache.size) cache.head = new_head; } static void whisper_kv_cache_seq_cp( struct whisper_kv_cache & cache, whisper_seq_id seq_id_src, whisper_seq_id seq_id_dst, whisper_pos p0, whisper_pos p1) { if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); cache.head = 0; for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].seq_id.insert(seq_id_dst); } } } static uint32_t whisper_kv_cache_get_padding(const struct whisper_context & wctx) { if (!wctx.params.flash_attn || !wctx.params.use_gpu) { return 1u; } #ifdef GGML_USE_METAL if (wctx.params.use_gpu) { return 32u; } #endif #ifdef GGML_USE_CUDA if (wctx.params.use_gpu) { return 256u; } #endif return 1u; } // [EXPERIMENTAL] Token-level timestamps with DTW static bool aheads_masks_init( const whisper_context_params & cparams, const whisper_hparams & hparams, struct whisper_aheads_masks & aheads_masks, ggml_backend_t backend) { const int32_t n_text_layer = hparams.n_text_layer; const int32_t n_head = hparams.n_text_head; // Sanity checks if (cparams.dtw_aheads_preset == WHISPER_AHEADS_NONE) { WHISPER_LOG_ERROR("%s: dtw_aheads_preset should be != DTW_AHEADS_NONE\n", __func__); return false; } else if (cparams.dtw_aheads_preset == WHISPER_AHEADS_N_TOP_MOST) { if (cparams.dtw_n_top > n_text_layer || cparams.dtw_n_top <= 0) { WHISPER_LOG_ERROR("%s: dtw_n_top must be between %d and %d for this model.", __func__, 1, n_text_layer); return false; } } else { const auto aheads = cparams.dtw_aheads_preset == WHISPER_AHEADS_CUSTOM ? cparams.dtw_aheads : g_aheads.at(cparams.dtw_aheads_preset); if (cparams.dtw_aheads_preset == WHISPER_AHEADS_CUSTOM) { if (aheads.n_heads == 0) { WHISPER_LOG_ERROR("%s: dtw_aheads.n_heads should be > 0", __func__); return false; } if (aheads.heads == NULL) { WHISPER_LOG_ERROR("%s: dtw_aheads.heads unset", __func__); return false; } } for (size_t i = 0; i < aheads.n_heads; ++i) { if (aheads.heads[i].n_text_layer >= n_text_layer) { WHISPER_LOG_ERROR("%s: tried to set alignment head on text layer %d, but model only has %d text layers", __func__, aheads.heads[i].n_text_layer + 1, n_text_layer); return false; } if (aheads.heads[i].n_text_layer < 0) { WHISPER_LOG_ERROR("%s: tried to set alignment head on text layer < 0", __func__); return false; } if (aheads.heads[i].n_head >= n_head) { WHISPER_LOG_ERROR("%s: tried to set alignment head on head %d, but model only has %d heads", __func__, aheads.heads[i].n_head + 1, n_head); return false; } if (aheads.heads[i].n_head < 0) { WHISPER_LOG_ERROR("%s: tried to set alignment head on head < 0", __func__); return false; } } } struct ggml_init_params params = { /*.mem_size =*/ (size_t) static_cast(n_text_layer)*ggml_tensor_overhead(), /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; aheads_masks.ctx = ggml_init(params); if (!aheads_masks.ctx) { WHISPER_LOG_ERROR("%s: failed to allocate memory for the aheads_masks context\n", __func__); return false; } for (int64_t il = 0; il < n_text_layer; ++il) { auto aheads = get_alignment_heads_by_layer(cparams, il, n_text_layer, n_head); if (!aheads.empty()) { aheads_masks.m.push_back(ggml_new_tensor_2d(aheads_masks.ctx, GGML_TYPE_F32, n_head, aheads.size())); } else { aheads_masks.m.push_back(nullptr); } } aheads_masks.buffer = ggml_backend_alloc_ctx_tensors(aheads_masks.ctx, backend); if (!aheads_masks.buffer) { WHISPER_LOG_ERROR("%s: failed to allocate memory for aheads_masks\n", __func__); return false; } // Set data on mask tensors // Since this must be backend agnostic, we write our desired values on mask_data, // and send it to backend with ggml_backend_tensor_set. // Each mask in N_HEADS*N_ALIGNMENT_HEADS, one per text layer containing alignment // heads. Each row of the mask "marks" one alignment head. E.g. if some text layer // has a total of 10 heads and of those, heads 0,5,6 are alignment heads, the mask // should read: // 1 0 0 0 0 0 0 0 0 0 // 0 0 0 0 0 1 0 0 0 0 // 0 0 0 0 0 0 1 0 0 0 std::vector mask_data; for (int64_t il = 0; il < n_text_layer; ++il) { if (aheads_masks.m[il] != nullptr) { auto aheads = get_alignment_heads_by_layer(cparams, il, n_text_layer, n_head); size_t data_size = aheads_masks.m[il]->ne[0] * aheads_masks.m[il]->ne[1]; size_t data_size_bytes = data_size * sizeof(float); mask_data.resize(data_size); std::fill(mask_data.begin(), mask_data.end(), 0); for (size_t ih = 0; ih < aheads.size(); ++ih) { size_t pos = (aheads[ih] + (ih * aheads_masks.m[il]->ne[0])); mask_data[pos] = 1.0f; } ggml_backend_tensor_set(aheads_masks.m[il], mask_data.data(), 0, data_size_bytes); } } if (aheads_masks.m.empty()) { WHISPER_LOG_ERROR("%s: \n", __func__); return false; } return true; } static void aheads_masks_free(struct whisper_aheads_masks & aheads_masks) { ggml_free(aheads_masks.ctx); ggml_backend_buffer_free(aheads_masks.buffer); aheads_masks.ctx = nullptr; } static size_t aheads_masks_nbytes(struct whisper_aheads_masks & aheads_masks) { size_t size = 0; for (size_t i = 0; i < aheads_masks.m.size(); ++i) { if (aheads_masks.m[i] != nullptr) size += ggml_nbytes(aheads_masks.m[i]); } return size; } static ggml_backend_t whisper_backend_init_gpu(const whisper_context_params & params) { ggml_backend_t result = NULL; #ifdef GGML_USE_CUDA if (params.use_gpu) { WHISPER_LOG_INFO("%s: using CUDA backend\n", __func__); result = ggml_backend_cuda_init(params.gpu_device); if (!result) { WHISPER_LOG_ERROR("%s: ggml_backend_cuda_init() failed\n", __func__); } } #endif #ifdef GGML_USE_METAL if (params.use_gpu) { WHISPER_LOG_INFO("%s: using Metal backend\n", __func__); ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data); result = ggml_backend_metal_init(); if (!result) { WHISPER_LOG_ERROR("%s: ggml_backend_metal_init() failed\n", __func__); } else if (!ggml_backend_metal_supports_family(result, 7)) { WHISPER_LOG_ERROR("%s: Metal GPU does not support family 7 - falling back to CPU\n", __func__); ggml_backend_free(result); result = NULL; } } #endif #ifdef GGML_USE_SYCL if (params.use_gpu) { WHISPER_LOG_INFO("%s: using SYCL backend\n", __func__); result = ggml_backend_sycl_init(params.gpu_device); if (!result) { WHISPER_LOG_ERROR("%s: ggml_backend_sycl_init() failed\n", __func__); } } #endif #ifdef GGML_USE_VULKAN if (params.use_gpu) { WHISPER_LOG_INFO("%s: using Vulkan backend\n", __func__); result = ggml_backend_vk_init(params.gpu_device); if (!result) { WHISPER_LOG_ERROR("%s: ggml_backend_vk_init() failed\n", __func__); } } #endif #ifdef GGML_USE_CANN if (params.use_gpu) { WHISPER_LOG_INFO("%s: using CANN backend\n", __func__); result = ggml_backend_cann_init(params.gpu_device); if (!result) { WHISPER_LOG_ERROR("%s: ggml_backend_cann_init() failed\n", __func__); } } #endif GGML_UNUSED(params); return result; } static std::vector whisper_backend_init(const whisper_context_params & params) { std::vector result; ggml_backend_t backend_gpu = whisper_backend_init_gpu(params); if (backend_gpu) { result.push_back(backend_gpu); } #ifdef GGML_USE_BLAS { WHISPER_LOG_INFO("%s: using BLAS backend\n", __func__); ggml_backend_t backend_blas = ggml_backend_blas_init(); if (!backend_blas) { WHISPER_LOG_ERROR("%s: ggml_backend_blas_init() failed\n", __func__); } else { result.push_back(backend_blas); } } #endif GGML_UNUSED(params); result.push_back(ggml_backend_cpu_init()); return result; } static ggml_backend_buffer_type_t whisper_default_buffer_type(const whisper_context_params & params) { ggml_backend_buffer_type_t result = nullptr; params.use_gpu || (result = ggml_backend_cpu_buffer_type()); #ifdef GGML_USE_CUDA result || (result = ggml_backend_cuda_buffer_type(params.gpu_device)); #endif #ifdef GGML_USE_METAL result || (result = ggml_backend_metal_buffer_type()); #endif #ifdef GGML_USE_SYCL result || (result = ggml_backend_sycl_buffer_type(params.gpu_device)); #endif #ifdef GGML_USE_VULKAN result || (result = ggml_backend_vk_buffer_type(params.gpu_device)); #endif #ifdef GGML_USE_CANN result || (result == ggml_backend_cann_buffer_type(params.gpu_device)); #endif result || (result = ggml_backend_cpu_buffer_type()); return result; } // load the model from a ggml file // // file format: // // - hparams // - pre-computed mel filters // - vocab // - weights // // see the convert-pt-to-ggml.py script for details // static bool whisper_model_load(struct whisper_model_loader * loader, whisper_context & wctx) { WHISPER_LOG_INFO("%s: loading model\n", __func__); const int64_t t_start_us = ggml_time_us(); wctx.t_start_us = t_start_us; auto & model = wctx.model; auto & vocab = wctx.vocab; // verify magic { uint32_t magic; read_safe(loader, magic); if (magic != GGML_FILE_MAGIC) { WHISPER_LOG_ERROR("%s: invalid model data (bad magic)\n", __func__); return false; } } //load hparams { auto & hparams = model.hparams; read_safe(loader, hparams.n_vocab); read_safe(loader, hparams.n_audio_ctx); read_safe(loader, hparams.n_audio_state); read_safe(loader, hparams.n_audio_head); read_safe(loader, hparams.n_audio_layer); read_safe(loader, hparams.n_text_ctx); read_safe(loader, hparams.n_text_state); read_safe(loader, hparams.n_text_head); read_safe(loader, hparams.n_text_layer); read_safe(loader, hparams.n_mels); read_safe(loader, hparams.ftype); assert(hparams.n_text_state == hparams.n_audio_state); std::string mver = ""; if (hparams.n_audio_layer == 4) { model.type = e_model::MODEL_TINY; } if (hparams.n_audio_layer == 6) { model.type = e_model::MODEL_BASE; } if (hparams.n_audio_layer == 12) { model.type = e_model::MODEL_SMALL; } if (hparams.n_audio_layer == 24) { model.type = e_model::MODEL_MEDIUM; } if (hparams.n_audio_layer == 32) { model.type = e_model::MODEL_LARGE; if (hparams.n_vocab == 51866) { mver = " v3"; } } const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; hparams.ftype %= GGML_QNT_VERSION_FACTOR; // for the big tensors, we have the option to store the data in 16-bit floats or quantized // in order to save memory and also to speed up the computation wctx.wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype)); if (wctx.wtype == GGML_TYPE_COUNT) { WHISPER_LOG_ERROR("%s: invalid model (bad ftype value %d)\n", __func__, model.hparams.ftype); return false; } WHISPER_LOG_INFO("%s: n_vocab = %d\n", __func__, hparams.n_vocab); WHISPER_LOG_INFO("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); WHISPER_LOG_INFO("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); WHISPER_LOG_INFO("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); WHISPER_LOG_INFO("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); WHISPER_LOG_INFO("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); WHISPER_LOG_INFO("%s: n_text_state = %d\n", __func__, hparams.n_text_state); WHISPER_LOG_INFO("%s: n_text_head = %d\n", __func__, hparams.n_text_head); WHISPER_LOG_INFO("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); WHISPER_LOG_INFO("%s: n_mels = %d\n", __func__, hparams.n_mels); WHISPER_LOG_INFO("%s: ftype = %d\n", __func__, model.hparams.ftype); WHISPER_LOG_INFO("%s: qntvr = %d\n", __func__, qntvr); WHISPER_LOG_INFO("%s: type = %d (%s%s)\n", __func__, model.type, g_model_name.at(model.type).c_str(), mver.c_str()); } // load mel filters { auto & filters = wctx.model.filters; read_safe(loader, filters.n_mel); read_safe(loader, filters.n_fft); filters.data.resize(filters.n_mel * filters.n_fft); loader->read(loader->context, filters.data.data(), filters.data.size() * sizeof(float)); BYTESWAP_FILTERS(filters); } // load vocab { int32_t n_vocab = 0; read_safe(loader, n_vocab); //if (n_vocab != model.hparams.n_vocab) { // WHISPER_LOG_ERROR("%s: invalid model file '%s' (bad vocab size %d != %d)\n", // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); // return false; //} std::string word; std::vector tmp; tmp.reserve(128); for (int i = 0; i < n_vocab; i++) { uint32_t len; read_safe(loader, len); if (len > 0) { tmp.resize(len); loader->read(loader->context, &tmp[0], tmp.size()); // read to buffer word.assign(&tmp[0], tmp.size()); } else { // seems like we have an empty-string token in multi-language models (i = 50256) //WHISPER_LOG_WARN("%s: warning: empty-string token in vocab, i = %d\n", __func__, i); word = ""; } vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); } vocab.n_vocab = model.hparams.n_vocab; if (vocab.is_multilingual()) { vocab.token_eot++; vocab.token_sot++; // account for variable number of language tokens const int dt = vocab.num_languages() - 98; vocab.token_translate += dt; vocab.token_transcribe += dt; vocab.token_solm += dt; vocab.token_prev += dt; vocab.token_nosp += dt; vocab.token_not += dt; vocab.token_beg += dt; } if (n_vocab < model.hparams.n_vocab) { WHISPER_LOG_INFO("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); for (int i = n_vocab; i < model.hparams.n_vocab; i++) { if (i > vocab.token_beg) { word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; } else if (i == vocab.token_eot) { word = "[_EOT_]"; } else if (i == vocab.token_sot) { word = "[_SOT_]"; } else if (i == vocab.token_translate) { word = "[_TRANSLATE_]"; } else if (i == vocab.token_transcribe) { word = "[_TRANSCRIBE_]"; } else if (i == vocab.token_solm) { word = "[_SOLM_]"; } else if (i == vocab.token_prev) { word = "[_PREV_]"; } else if (i == vocab.token_nosp) { word = "[_NOSP_]"; } else if (i == vocab.token_not) { word = "[_NOT_]"; } else if (i == vocab.token_beg) { word = "[_BEG_]"; } else if (i > vocab.token_sot && i <= vocab.token_sot + vocab.num_languages()) { word = "[_LANG_" + std::string(whisper_lang_str(i - vocab.token_sot - 1)) + "]"; } else { word = "[_extra_token_" + std::to_string(i) + "]"; } vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } WHISPER_LOG_INFO("%s: n_langs = %d\n", __func__, vocab.num_languages()); } const ggml_type wtype = wctx.wtype; const ggml_type vtype = wctx.wtype == GGML_TYPE_F32 ? GGML_TYPE_F32 : GGML_TYPE_F16; // conv type // create the ggml context { const auto & hparams = model.hparams; const int n_audio_layer = hparams.n_audio_layer; const int n_text_layer = hparams.n_text_layer; const size_t n_tensors = 10 /* input */ + 15 + 15*n_audio_layer + 24*n_text_layer; struct ggml_init_params params = { /*.mem_size =*/ n_tensors*ggml_tensor_overhead(), /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; model.ctx = ggml_init(params); if (!model.ctx) { WHISPER_LOG_ERROR("%s: ggml_init() failed\n", __func__); return false; } } // prepare tensors for the weights { auto & ctx = model.ctx; const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_audio_ctx = hparams.n_audio_ctx; const int n_audio_state = hparams.n_audio_state; const int n_audio_layer = hparams.n_audio_layer; const int n_text_ctx = hparams.n_text_ctx; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_mels = hparams.n_mels; model.layers_encoder.resize(n_audio_layer); model.layers_decoder.resize(n_text_layer); // encoder { model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); model.e_conv_1_w = ggml_new_tensor_3d(ctx, vtype, 3, n_mels, n_audio_state); model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); model.e_conv_2_w = ggml_new_tensor_3d(ctx, vtype, 3, n_audio_state, n_audio_state); model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); // map by name model.tensors["encoder.positional_embedding"] = model.e_pe; model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; model.tensors["encoder.ln_post.weight"] = model.e_ln_w; model.tensors["encoder.ln_post.bias"] = model.e_ln_b; for (int i = 0; i < n_audio_layer; ++i) { auto & layer = model.layers_encoder[i]; layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); // map by name model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; } } // decoder { model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); // map by name model.tensors["decoder.positional_embedding"] = model.d_pe; model.tensors["decoder.token_embedding.weight"] = model.d_te; model.tensors["decoder.ln.weight"] = model.d_ln_w; model.tensors["decoder.ln.bias"] = model.d_ln_b; for (int i = 0; i < n_text_layer; ++i) { auto & layer = model.layers_decoder[i]; layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); // map by name model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; } } } // allocate tensors in the backend buffers model.buffer = ggml_backend_alloc_ctx_tensors_from_buft(model.ctx, whisper_default_buffer_type(wctx.params)); if (!model.buffer) { WHISPER_LOG_ERROR("%s: failed to allocate memory for the model\n", __func__); return false; } size_t size_main = ggml_backend_buffer_get_size(model.buffer); WHISPER_LOG_INFO("%s: %8s total size = %8.2f MB\n", __func__, ggml_backend_buffer_name(model.buffer), size_main / 1e6); // load weights { size_t total_size = 0; model.n_loaded = 0; std::vector read_buf; while (true) { int32_t n_dims; int32_t length; int32_t ttype; read_safe(loader, n_dims); read_safe(loader, length); read_safe(loader, ttype); if (loader->eof(loader->context)) { break; } int32_t nelements = 1; int32_t ne[4] = { 1, 1, 1, 1 }; for (int i = 0; i < n_dims; ++i) { read_safe(loader, ne[i]); nelements *= ne[i]; } std::string name; std::vector tmp(length); // create a buffer loader->read(loader->context, &tmp[0], tmp.size()); // read to buffer name.assign(&tmp[0], tmp.size()); if (model.tensors.find(name) == model.tensors.end()) { WHISPER_LOG_ERROR("%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { WHISPER_LOG_ERROR("%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); WHISPER_LOG_ERROR("%s: shape: [%d, %d, %d], expected: [%d, %d, %d]\n", __func__, ne[0], ne[1], ne[2], (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2]); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { WHISPER_LOG_ERROR("%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", __func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], ne[0], ne[1], ne[2]); return false; } const size_t bpe = ggml_type_size(ggml_type(ttype)); if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { WHISPER_LOG_ERROR("%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } //ggml_backend_t backend = wctx.backend; //printf("%s: [%5.5s] %s\n", __func__, ggml_backend_name(backend), name.c_str()); if (ggml_backend_buffer_is_host(model.buffer)) { // for the CPU and Metal backend, we can read directly into the tensor loader->read(loader->context, tensor->data, ggml_nbytes(tensor)); BYTESWAP_TENSOR(tensor); } else { // read into a temporary buffer first, then copy to device memory read_buf.resize(ggml_nbytes(tensor)); loader->read(loader->context, read_buf.data(), read_buf.size()); ggml_backend_tensor_set(tensor, read_buf.data(), 0, ggml_nbytes(tensor)); } //printf("%48s - [%5d, %5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ne[2], ggml_type_name((ggml_type) ttype), ggml_nbytes(tensor)/1e6); total_size += ggml_nbytes(tensor); model.n_loaded++; } WHISPER_LOG_INFO("%s: model size = %7.2f MB\n", __func__, total_size/1e6); if (model.n_loaded == 0) { WHISPER_LOG_WARN("%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__); } else if (model.n_loaded != (int) model.tensors.size()) { WHISPER_LOG_ERROR("%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded); return false; } } ggml_backend_buffer_set_usage(model.buffer, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); wctx.t_load_us = ggml_time_us() - t_start_us; return true; } static bool whisper_encode_external(const whisper_state & wstate) { GGML_UNUSED(wstate); #ifndef WHISPER_USE_COREML const bool use_coreml = false; #else const bool use_coreml = wstate.ctx_coreml != nullptr; #endif #ifndef WHISPER_USE_OPENVINO const bool use_openvino = false; #else const bool use_openvino = wstate.ctx_openvino != nullptr; #endif return use_coreml || use_openvino; } static struct ggml_cgraph * whisper_build_graph_conv( whisper_context & wctx, whisper_state & wstate, const int mel_offset) { const auto & model = wctx.model; const auto & hparams = model.hparams; const int n_ctx = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : hparams.n_audio_ctx; const int n_state = hparams.n_audio_state; GGML_UNUSED(n_state); const int n_mels = hparams.n_mels; struct ggml_init_params params = { /*.mem_size =*/ wstate.sched_conv.meta.size(), /*.mem_buffer =*/ wstate.sched_conv.meta.data(), /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); GGML_ASSERT(wstate.mel.tensor); ggml_tensor * mel_inp = wstate.mel.tensor; ggml_set_input(mel_inp); ggml_tensor * mel; if (ggml_nelements(mel_inp) > 0) { const int n_len = int(mel_inp->ne[0]); const int out_s = 2 * n_ctx; const int i0 = std::min(mel_offset, n_len); const int i1 = std::min(mel_offset + out_s, n_len); const int mel_s = i1 - i0; assert(mel_inp->type == GGML_TYPE_F32); assert(mel_inp->ne[1] == n_mels); ggml_tensor * cur = ggml_view_2d(ctx0, mel_inp, out_s, n_mels, mel_inp->nb[1], ggml_row_size(mel_inp->type, i0)); if (mel_s < out_s) { mel = ggml_pad(ctx0, cur, out_s - mel_s, 0, 0, 0); } else { mel = ggml_cont(ctx0, cur); } } else { // empty mel - just create a dummy tensor with the correct size mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); } ggml_set_name(mel, "mel"); struct ggml_tensor * cur = nullptr; if (!whisper_encode_external(wstate)) { // convolution + gelu { cur = ggml_conv_1d_ph(ctx0, model.e_conv_1_w, mel, 1, 1); cur = ggml_add(ctx0, cur, model.e_conv_1_b); cur = ggml_gelu(ctx0, cur); cur = ggml_conv_1d_ph(ctx0, model.e_conv_2_w, cur, 2, 1); cur = ggml_add(ctx0, cur, model.e_conv_2_b); cur = ggml_gelu(ctx0, cur); } ggml_set_name(cur, "embd_conv"); wstate.embd_conv = cur; } else { ggml_build_forward_expand(gf, mel); cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx); ggml_set_input(cur); // the external encoder will write into this tensor ggml_set_name(cur, "embd_enc"); wstate.embd_enc = cur; } ggml_set_output(cur); ggml_build_forward_expand(gf, cur); ggml_free(ctx0); return gf; } static struct ggml_cgraph * whisper_build_graph_encoder( whisper_context & wctx, whisper_state & wstate) { const auto & model = wctx.model; const auto & hparams = model.hparams; const int n_ctx = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : hparams.n_audio_ctx; const int n_state = hparams.n_audio_state; const int n_head = hparams.n_audio_head; const int n_layer = hparams.n_audio_layer; const int n_state_head = n_state/n_head; auto & kv_pad = wstate.kv_pad; WHISPER_ASSERT(!!kv_pad.ctx); const int n_ctx_pad = GGML_PAD(n_ctx, 256); struct ggml_init_params params = { /*.mem_size =*/ wstate.sched_encode.meta.size(), /*.mem_buffer =*/ wstate.sched_encode.meta.data(), /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph_custom(ctx0, WHISPER_MAX_NODES, false); struct ggml_tensor * cur = ggml_view_tensor(ctx0, wstate.embd_conv); const float KQscale = 1.0f/sqrtf(float(n_state_head)); // =================================================================== // NOTE: experimenting with partial evaluation of the encoder (ignore) //static int iter = -1; //const int n_iter = 1500/n_ctx; //iter = (iter + 1) % n_iter; //if (iter == 0) { // memset(model.memory_cross_k->data, 0, ggml_nbytes(model.memory_cross_k)); // memset(model.memory_cross_v->data, 0, ggml_nbytes(model.memory_cross_v)); //} static int iter = 0; const size_t e_pe_stride = model.e_pe->ne[0]*ggml_element_size(model.e_pe); const size_t e_pe_offset = model.e_pe->ne[0]*ggml_element_size(model.e_pe)*n_ctx*iter; struct ggml_tensor * e_pe = ggml_view_2d(ctx0, model.e_pe, model.e_pe->ne[0], n_ctx, e_pe_stride, e_pe_offset); cur = ggml_add(ctx0, e_pe, ggml_cont(ctx0, ggml_transpose(ctx0, cur))); // =================================================================== // original: //cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); struct ggml_tensor * inpL = cur; for (int il = 0; il < n_layer; ++il) { const auto & layer = model.layers_encoder[il]; // norm { cur = ggml_norm(ctx0, inpL, hparams.eps); // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.attn_ln_0_w), layer.attn_ln_0_b); } // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.attn_q_w, cur); Qcur = ggml_add(ctx0, Qcur, layer.attn_q_b); //Qcur = ggml_scale(ctx0, Qcur, pow(float(n_state_head), -0.25)); // note: no bias for Key struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.attn_k_w, cur); //Kcur = ggml_scale(ctx0, Kcur, pow(float(n_state_head), -0.25)); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.attn_v_w, cur); Vcur = ggml_add(ctx0, Vcur, layer.attn_v_b); // ------ struct ggml_tensor * Q = ggml_permute(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_state_head, n_head, n_ctx)), 0, 2, 1, 3); if (wctx.params.flash_attn) { ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, ggml_view_1d(ctx0, kv_pad.k, n_ctx*n_state, 0))); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, ggml_view_1d(ctx0, kv_pad.v, n_ctx*n_state, 0))); struct ggml_tensor * K = ggml_view_3d(ctx0, kv_pad.k, n_state_head, n_ctx_pad, n_head, ggml_element_size(kv_pad.k)*n_state, ggml_element_size(kv_pad.k)*n_state_head, 0); struct ggml_tensor * V = ggml_view_3d(ctx0, kv_pad.v, n_state_head, n_ctx_pad, n_head, ggml_element_size(kv_pad.v)*n_state, ggml_element_size(kv_pad.v)*n_state_head, 0); cur = ggml_flash_attn_ext(ctx0, Q, K, V, nullptr, KQscale, 0.0f, 0.0f); cur = ggml_reshape_2d(ctx0, cur, n_state, n_ctx); } else { struct ggml_tensor * K = ggml_permute(ctx0, ggml_cpy(ctx0, Kcur, ggml_new_tensor_3d(ctx0, wctx.itype, n_state_head, n_head, n_ctx)), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); struct ggml_tensor * KQ_soft_max = ggml_soft_max_ext(ctx0, KQ, nullptr, KQscale, 0.0f); struct ggml_tensor * V = ggml_cpy(ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, Vcur, n_state_head, n_head, n_ctx), 1, 2, 0, 3), ggml_new_tensor_3d(ctx0, wctx.itype, n_ctx, n_state_head, n_head) ); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx)); } } // projection { cur = ggml_mul_mat(ctx0, layer.attn_ln_1_w, cur); cur = ggml_add(ctx0, cur, layer.attn_ln_1_b); } // add the input cur = ggml_add(ctx0, cur, inpL); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { cur = ggml_norm(ctx0, inpFF, hparams.eps); // cur = mlp_ln_w*cur + mlp_ln_b cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.mlp_ln_w), layer.mlp_ln_b); } #ifdef WHISPER_USE_FLASH_FF cur = ggml_flash_ff(ctx0, ggml_cpy(ctx0, cur, ggml_new_tensor_2d(ctx0, wstate.itype, n_state, n_ctx)), layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b); #else // fully connected cur = ggml_mul_mat(ctx0, layer.mlp_0_w, cur); cur = ggml_add(ctx0, cur, layer.mlp_0_b); // GELU activation cur = ggml_gelu(ctx0, cur); // projection cur = ggml_mul_mat(ctx0, layer.mlp_1_w, cur); cur = ggml_add(ctx0, cur, layer.mlp_1_b); #endif } inpL = ggml_add(ctx0, cur, inpFF); } cur = inpL; // norm { cur = ggml_norm(ctx0, cur, hparams.eps); // cur = ln_f_g*cur + ln_f_b cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.e_ln_w), model.e_ln_b); } ggml_build_forward_expand(gf, cur); wstate.embd_enc = cur; //ggml_graph_print(gf); //////////////////////////////////////////////////////////////////////////// //printf("%s: used_mem = %f MB, %f MB, %f MB %f MB %f MB\n", __func__, // ggml_used_mem(ctx0)/1e6, // wstate.get_buf_max_mem(0)/1e6, // wstate.get_buf_max_mem(1)/1e6, // wstate.get_buf_max_mem(2)/1e6, // wstate.get_buf_max_mem(3)/1e6); ggml_free(ctx0); return gf; } // pre-compute cross-attention memory static struct ggml_cgraph * whisper_build_graph_cross( whisper_context & wctx, whisper_state & wstate) { const auto & model = wctx.model; const auto & hparams = model.hparams; const int n_ctx = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : hparams.n_audio_ctx; const int n_state = hparams.n_audio_state; const int n_head = hparams.n_audio_head; const int n_state_head = n_state/n_head; const int n_ctx_pad = GGML_PAD(n_ctx, 256); struct ggml_init_params params = { /*.mem_size =*/ wstate.sched_cross.meta.size(), /*.mem_buffer =*/ wstate.sched_cross.meta.data(), /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * cur = ggml_view_tensor(ctx0, wstate.embd_enc); const float Kscale = pow(float(n_state_head), -0.25); for (int il = 0; il < model.hparams.n_text_layer; ++il) { auto & layer = model.layers_decoder[il]; struct ggml_tensor * Kcross = ggml_mul_mat(ctx0, layer.cross_attn_k_w, cur); Kcross = ggml_scale(ctx0, Kcross, Kscale); struct ggml_tensor * Vcross = ggml_mul_mat(ctx0, layer.cross_attn_v_w, cur); Vcross = ggml_add(ctx0, Vcross, layer.cross_attn_v_b); struct ggml_tensor * k; struct ggml_tensor * v; if (wctx.params.flash_attn) { k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx_pad)); v = ggml_view_1d(ctx0, wstate.kv_cross.v, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.v)*n_state)*(il*n_ctx_pad)); } else { Vcross = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcross, n_state, n_ctx)); k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx)); v = ggml_view_2d(ctx0, wstate.kv_cross.v, n_ctx, n_state, ( n_ctx)*ggml_element_size(wstate.kv_cross.v), (il*n_ctx)*ggml_element_size(wstate.kv_cross.v)*n_state); } ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcross, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcross, v)); } //ggml_graph_print(gf); ggml_free(ctx0); return gf; } // evaluate the encoder with the given state // // given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder // part of the transformer model and returns the encoded features // // - wctx: the model // - wstate: the state of the encoder // - n_threads: number of threads to use // - mel_offset: offset in the mel spectrogram (i.e. audio offset) // static bool whisper_encode_internal( whisper_context & wctx, whisper_state & wstate, const int mel_offset, const int n_threads, ggml_abort_callback abort_callback, void * abort_callback_data) { const int64_t t_start_us = ggml_time_us(); // conv { auto & sched = wstate.sched_conv.sched; ggml_cgraph * gf = whisper_build_graph_conv(wctx, wstate, mel_offset); if (!ggml_backend_sched_alloc_graph(sched, gf)) { // should never happen as we pre-allocate the memory return false; } if (!ggml_graph_compute_helper(sched, gf, n_threads)) { return false; } if (whisper_encode_external(wstate)) { ggml_tensor * mel = ggml_graph_get_tensor(gf, "mel"); assert(mel->ne[1] == wctx.model.hparams.n_mels); GGML_UNUSED(mel); #if defined(WHISPER_USE_COREML) whisper_coreml_encode(wstate.ctx_coreml, mel->ne[0], mel->ne[1], (float *) mel->data, (float *) wstate.embd_enc->data); #elif defined(WHISPER_USE_OPENVINO) whisper_openvino_encode(wstate.ctx_openvino, mel, wstate.embd_enc); #endif } } // encoder if (!whisper_encode_external(wstate)) { auto & sched = wstate.sched_encode.sched; ggml_cgraph * gf = whisper_build_graph_encoder(wctx, wstate); if (!ggml_backend_sched_alloc_graph(sched, gf)) { // should never happen as we pre-allocate the memory return false; } if (!ggml_graph_compute_helper(sched, gf, n_threads)) { return false; } } // cross { auto & sched = wstate.sched_cross.sched; ggml_cgraph * gf = whisper_build_graph_cross(wctx, wstate); if (!ggml_backend_sched_alloc_graph(sched, gf)) { // should never happen as we pre-allocate the memory return false; } if (!ggml_graph_compute_helper(sched, gf, n_threads)) { return false; } } wstate.t_encode_us += ggml_time_us() - t_start_us; wstate.n_encode++; return !(abort_callback && abort_callback(abort_callback_data)); } static struct ggml_cgraph * whisper_build_graph_decoder( whisper_context & wctx, whisper_state & wstate, const whisper_batch & batch, bool save_alignment_heads_QKs, bool worst_case) { const auto & model = wctx.model; const auto & hparams = model.hparams; auto & kv_self = wstate.kv_self; WHISPER_ASSERT(!!kv_self.ctx); const int n_ctx = kv_self.size; const int n_state = hparams.n_text_state; const int n_head = hparams.n_text_head; const int n_layer = hparams.n_text_layer; const int n_state_head = n_state/n_head; const int n_tokens = batch.n_tokens; const int n_audio_ctx = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : hparams.n_audio_ctx; const int n_audio_ctx_pad = GGML_PAD(n_audio_ctx, 256); const int32_t n_kv = worst_case ? n_ctx : kv_self.n; const int32_t kv_head = worst_case ? n_ctx - n_tokens : kv_self.head; //WHISPER_LOG_DEBUG("%s: n_past = %d, n_tokens = %d, n_audio_ctx = %d, n_ctx = %d\n", __func__, n_past, n_tokens, n_audio_ctx, n_ctx); struct ggml_init_params params = { /*.mem_size =*/ wstate.sched_decode.meta.size(), /*.mem_buffer =*/ wstate.sched_decode.meta.data(), /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph_custom(ctx0, WHISPER_MAX_NODES, false); struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_set_name(embd, "embd"); ggml_set_input(embd); struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_set_name(position, "position"); ggml_set_input(position); const float KQscale = pow(float(n_state_head), -0.25); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1); ggml_set_name(KQ_mask, "KQ_mask"); ggml_set_input(KQ_mask); struct ggml_tensor * KQ_mask_f16 = ggml_cast(ctx0, KQ_mask, GGML_TYPE_F16); // token encoding + position encoding struct ggml_tensor * cur = ggml_add(ctx0, ggml_get_rows(ctx0, model.d_te, embd), ggml_get_rows(ctx0, model.d_pe, position)); struct ggml_tensor * inpL = cur; // [EXPERIMENTAL] Token-level timestamps with DTW struct ggml_tensor * aheads_cross_QKs = nullptr; for (int il = 0; il < n_layer; ++il) { const auto & layer = model.layers_decoder[il]; // norm { cur = ggml_norm(ctx0, inpL, hparams.eps); // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.attn_ln_0_w), layer.attn_ln_0_b); } // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.attn_q_w, cur); Qcur = ggml_add(ctx0, Qcur, layer.attn_q_b); Qcur = ggml_scale(ctx0, Qcur, KQscale); // note: no bias for Key struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.attn_k_w, cur); Kcur = ggml_scale(ctx0, Kcur, KQscale); // store key and value to memory { struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.attn_v_w, cur); Vcur = ggml_add(ctx0, Vcur, layer.attn_v_b); struct ggml_tensor * k; struct ggml_tensor * v; if (wctx.params.flash_attn) { k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_state, (ggml_element_size(kv_self.k)*n_state)*(il*n_ctx + kv_head)); v = ggml_view_1d(ctx0, kv_self.v, n_tokens*n_state, (ggml_element_size(kv_self.v)*n_state)*(il*n_ctx + kv_head)); } else { Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_state, n_tokens)); k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_state, (ggml_element_size(kv_self.k)*n_state)*(il*n_ctx + kv_head)); v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_state, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_state + kv_head*ggml_element_size(kv_self.v)); } ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } // ------ struct ggml_tensor * Q = ggml_permute(ctx0, ggml_reshape_3d(ctx0, Qcur, n_state_head, n_head, n_tokens), 0, 2, 1, 3); struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, n_state_head, n_kv, n_head, ggml_element_size(kv_self.k)*n_state, ggml_element_size(kv_self.k)*n_state_head, ggml_element_size(kv_self.k)*n_state*n_ctx*il); if (wctx.params.flash_attn) { struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_state_head, n_kv, n_head, ggml_element_size(kv_self.v)*n_state, ggml_element_size(kv_self.v)*n_state_head, ggml_element_size(kv_self.v)*n_state*n_ctx*il); cur = ggml_flash_attn_ext(ctx0, Q, K, V, KQ_mask_f16, 1.0f, 0.0f, 0.0f); cur = ggml_reshape_2d(ctx0, cur, n_state, n_tokens); } else { // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); struct ggml_tensor * KQ_soft_max = ggml_soft_max_ext(ctx0, KQ, KQ_mask, 1.0f, 0.0f); struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_kv, n_state_head, n_head, n_ctx*ggml_element_size(kv_self.v), n_ctx*ggml_element_size(kv_self.v)*n_state_head, n_ctx*ggml_element_size(kv_self.v)*n_state*il); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_tokens)); } } // projection { cur = ggml_mul_mat(ctx0, layer.attn_ln_1_w, cur); cur = ggml_add(ctx0, cur, layer.attn_ln_1_b); } // add the input struct ggml_tensor * inpCA = ggml_add(ctx0, cur, inpL); // norm { cur = ggml_norm(ctx0, inpCA, hparams.eps); // note: we use inpCA here // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.cross_attn_ln_0_w), layer.cross_attn_ln_0_b); } // cross-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.cross_attn_q_w, cur); Qcur = ggml_add(ctx0, Qcur, layer.cross_attn_q_b); struct ggml_tensor * Q = ggml_permute(ctx0, ggml_reshape_3d(ctx0, Qcur, n_state_head, n_head, n_tokens), 0, 2, 1, 3); if (wctx.params.flash_attn) { struct ggml_tensor * Kcross = ggml_view_3d(ctx0, wstate.kv_cross.k, n_state_head, n_audio_ctx_pad, n_head, ggml_element_size(wstate.kv_cross.k)*n_state, ggml_element_size(wstate.kv_cross.k)*n_state_head, ggml_element_size(wstate.kv_cross.k)*n_state*n_audio_ctx_pad*il); struct ggml_tensor * Vcross = ggml_view_3d(ctx0, wstate.kv_cross.v, n_state_head, n_audio_ctx_pad, n_head, ggml_element_size(wstate.kv_cross.v)*n_state, ggml_element_size(wstate.kv_cross.v)*n_state_head, ggml_element_size(wstate.kv_cross.v)*n_state*n_audio_ctx_pad*il); cur = ggml_flash_attn_ext(ctx0, Q, Kcross, Vcross, nullptr, KQscale, 0.0f, 0.0f); cur = ggml_reshape_2d(ctx0, cur, n_state, n_tokens); } else { struct ggml_tensor * Kcross = ggml_view_3d(ctx0, wstate.kv_cross.k, n_state_head, n_audio_ctx, n_head, ggml_element_size(wstate.kv_cross.k)*n_state, ggml_element_size(wstate.kv_cross.k)*n_state_head, ggml_element_size(wstate.kv_cross.k)*n_state*n_audio_ctx*il); struct ggml_tensor * Vcross = ggml_view_3d(ctx0, wstate.kv_cross.v, n_audio_ctx, n_state_head, n_head, n_audio_ctx*ggml_element_size(wstate.kv_cross.v), n_audio_ctx*ggml_element_size(wstate.kv_cross.v)*n_state_head, n_audio_ctx*ggml_element_size(wstate.kv_cross.v)*n_state*il); // ------ // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, Kcross, Q); struct ggml_tensor * KQ_soft_max = ggml_soft_max_ext(ctx0, KQ, nullptr, KQscale, 0.0f); // [EXPERIMENTAL] Token-level timestamps with DTW if (wctx.params.dtw_token_timestamps) { if (wstate.aheads_masks.m[il] != nullptr) { struct ggml_tensor * aheads_KQs = ggml_reshape_2d(ctx0, KQ_soft_max, KQ_soft_max->ne[0] * KQ_soft_max->ne[1], KQ_soft_max->ne[2]); aheads_KQs = ggml_transpose(ctx0, aheads_KQs); aheads_KQs = ggml_cont(ctx0, aheads_KQs); aheads_KQs = ggml_mul_mat(ctx0, wstate.aheads_masks.m[il], aheads_KQs); aheads_KQs = ggml_transpose(ctx0, aheads_KQs); aheads_KQs = ggml_cont(ctx0, aheads_KQs); aheads_KQs = ggml_reshape_3d(ctx0, aheads_KQs, KQ_soft_max->ne[0], KQ_soft_max->ne[1], wstate.aheads_masks.m[il]->ne[1]); if (aheads_cross_QKs == NULL) { aheads_cross_QKs = aheads_KQs; } else { aheads_cross_QKs = ggml_concat(ctx0, aheads_cross_QKs, aheads_KQs, 2); } } } struct ggml_tensor * KQV = ggml_mul_mat(ctx0, Vcross, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_tokens)); } } // projection { cur = ggml_mul_mat(ctx0, layer.cross_attn_ln_1_w, cur); cur = ggml_add(ctx0, cur, layer.cross_attn_ln_1_b); } // add the input cur = ggml_add(ctx0, cur, inpCA); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { cur = ggml_norm(ctx0, inpFF, hparams.eps); // cur = mlp_ln_w*cur + mlp_ln_b cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.mlp_ln_w), layer.mlp_ln_b); } // fully connected cur = ggml_mul_mat(ctx0, layer.mlp_0_w, cur); cur = ggml_add(ctx0, cur, layer.mlp_0_b); // GELU activation cur = ggml_gelu(ctx0, cur); // projection cur = ggml_mul_mat(ctx0, layer.mlp_1_w, cur); cur = ggml_add(ctx0, cur, layer.mlp_1_b); } inpL = ggml_add(ctx0, cur, inpFF); } cur = inpL; // norm { cur = ggml_norm(ctx0, cur, hparams.eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.d_ln_w), model.d_ln_b); } // compute logits only for the last token // comment this line to compute logits for all n_tokens // might be useful in the future //cur = ggml_view_2d(ctx0, cur, cur->ne[0], 1, cur->nb[1], (cur->ne[1] - 1)*cur->nb[1]); struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); // [EXPERIMENTAL] Token-level timestamps with DTW if (wctx.params.dtw_token_timestamps && aheads_cross_QKs != nullptr) { aheads_cross_QKs = ggml_transpose(ctx0, aheads_cross_QKs); aheads_cross_QKs = ggml_cont(ctx0, aheads_cross_QKs); if (save_alignment_heads_QKs) { ggml_build_forward_expand(gf, aheads_cross_QKs); wstate.aheads_cross_QKs = aheads_cross_QKs; } } ggml_build_forward_expand(gf, logits); ggml_free(ctx0); return gf; } // evaluate the decoder // // given text prompt + audio features -> computes the logits for the next token // // - model: the model // - n_threads: number of threads to use // - tokens: text prompt // - n_tokens: number of tokens in the prompt // - n_past: number of past tokens to prefix the prompt with // static bool whisper_decode_internal( whisper_context & wctx, whisper_state & wstate, const whisper_batch & batch, const int n_threads, bool save_alignment_heads_QKs, ggml_abort_callback abort_callback, void * abort_callback_data) { const int64_t t_start_us = ggml_time_us(); const auto & model = wctx.model; const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_tokens = batch.n_tokens; auto & logits_out = wstate.logits; struct ggml_tensor * logits; // find KV slot for the batch { auto & kv_self = wstate.kv_self; if (!whisper_kv_cache_find_slot(kv_self, batch)) { return false; } const uint32_t pad = whisper_kv_cache_get_padding(wctx); kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(whisper_kv_cache_cell_max(kv_self), pad))); //kv_self.n = std::min((int32_t) hparams.n_text_ctx, std::max(32, whisper_kv_cache_cell_max(kv_self))); //printf("n_tokens = %5d, kv_self.head = %5d, kv_self.n = %5d, seq_id = %5d\n", batch.n_tokens, kv_self.head, kv_self.n, batch.seq_id[0][0]); } // decoder { auto & sched = wstate.sched_decode.sched; ggml_cgraph * gf = whisper_build_graph_decoder(wctx, wstate, batch, save_alignment_heads_QKs, false); if (!ggml_backend_sched_alloc_graph(sched, gf)) { // should never happen as we pre-allocate the memory return false; } // set the inputs { struct ggml_tensor * embd = ggml_graph_get_tensor(gf, "embd"); ggml_backend_tensor_set(embd, batch.token, 0, n_tokens*ggml_element_size(embd)); } { struct ggml_tensor * position = ggml_graph_get_tensor(gf, "position"); for (int i = 0; i < n_tokens; ++i) { const int32_t val = batch.pos[i]; ggml_backend_tensor_set(position, &val, i*sizeof(int32_t), sizeof(int32_t)); } } { struct ggml_tensor * KQ_mask = ggml_graph_get_tensor(gf, "KQ_mask"); auto & kv_self = wstate.kv_self; const int32_t n_kv = kv_self.n; wstate.inp_mask.resize(ggml_nelements(KQ_mask)); float * data = wstate.inp_mask.data(); memset(data, 0, ggml_nbytes(KQ_mask)); for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const whisper_pos pos = batch.pos[j]; const whisper_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_kv; ++i) { if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; } } } for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { for (int j = 0; j < n_kv; ++j) { data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; } } } ggml_backend_tensor_set(KQ_mask, wstate.inp_mask.data(), 0, ggml_nelements(KQ_mask)*sizeof(float)); } logits = gf->nodes[gf->n_nodes - 1]; if (!ggml_graph_compute_helper(sched, gf, n_threads)) { return false; } } logits_out.resize(n_tokens*n_vocab); for (int i = 0; i < n_tokens; i++) { if (batch.logits[i] == 0) { continue; } ggml_backend_tensor_get(logits, logits_out.data() + (n_vocab*i), sizeof(float)*(n_vocab*i), sizeof(float)*n_vocab); } if (batch.n_tokens > 1) { //printf("%s: used_mem = %f MB, %f MB, %f MB %f MB %f MB\n", __func__, // ggml_used_mem(ctx0)/1e6, // wstate.get_buf_max_mem(0)/1e6, // wstate.get_buf_max_mem(1)/1e6, // wstate.get_buf_max_mem(2)/1e6, // wstate.get_buf_max_mem(3)/1e6); } if (batch.n_tokens == 1) { wstate.t_decode_us += ggml_time_us() - t_start_us; wstate.n_decode++; } else if (batch.n_tokens < 16) { wstate.t_batchd_us += ggml_time_us() - t_start_us; wstate.n_batchd += n_tokens; } else { wstate.t_prompt_us += ggml_time_us() - t_start_us; wstate.n_prompt += n_tokens; } return !(abort_callback && abort_callback(abort_callback_data)); } // 500 -> 00:05.000 // 6000 -> 01:00.000 static std::string to_timestamp(int64_t t, bool comma = false) { int64_t msec = t * 10; int64_t hr = msec / (1000 * 60 * 60); msec = msec - hr * (1000 * 60 * 60); int64_t min = msec / (1000 * 60); msec = msec - min * (1000 * 60); int64_t sec = msec / 1000; msec = msec - sec * 1000; char buf[32]; snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec); return std::string(buf); } #define SIN_COS_N_COUNT WHISPER_N_FFT namespace { struct whisper_global_cache { // In FFT, we frequently use sine and cosine operations with the same values. // We can use precalculated values to speed up the process. float sin_vals[SIN_COS_N_COUNT]; float cos_vals[SIN_COS_N_COUNT]; // Hann window (Use cosf to eliminate difference) // ref: https://pytorch.org/docs/stable/generated/torch.hann_window.html // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L147 float hann_window[WHISPER_N_FFT]; whisper_global_cache() { fill_sin_cos_table(); fill_hann_window(sizeof(hann_window)/sizeof(hann_window[0]), true, hann_window); } void fill_sin_cos_table() { for (int i = 0; i < SIN_COS_N_COUNT; i++) { double theta = (2 * M_PI * i) / SIN_COS_N_COUNT; sin_vals[i] = sinf(theta); cos_vals[i] = cosf(theta); } } void fill_hann_window(int length, bool periodic, float * output) { int offset = -1; if (periodic) { offset = 0; } for (int i = 0; i < length; i++) { output[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset))); } } } global_cache; } // Mel spectrogram void whisper_mel_init(whisper_mel & mel, ggml_backend_t backend, int n_len, int n_len_org, int n_mel) { //WHISPER_LOG_INFO("%s: n_len = %d, n_len_org = %d, n_mel = %d\n", __func__, n_len, n_len_org, n_mel); mel.n_len_org = n_len_org; assert(!mel.ctx); mel.ctx = ggml_init({ggml_tensor_overhead(), nullptr, true}); mel.tensor = ggml_new_tensor_2d(mel.ctx, GGML_TYPE_F32, n_len, n_mel); mel.buffer = ggml_backend_alloc_buffer(backend, ggml_nbytes(mel.tensor) + ggml_backend_get_alignment(backend)); auto alloc = ggml_tallocr_new(mel.buffer); ggml_tallocr_alloc(&alloc, mel.tensor); } void whisper_mel_free(whisper_mel & mel) { ggml_free(mel.ctx); ggml_backend_buffer_free(mel.buffer); mel.n_len_org = 0; mel.ctx = nullptr; mel.tensor = nullptr; mel.buffer = nullptr; } whisper_mel_calc::~whisper_mel_calc() = default; // export vtable whisper_span whisper_mel_calc::hann_window() { return {global_cache.hann_window, WHISPER_N_FFT}; } // naive Discrete Fourier Transform // input is real-valued // output is complex-valued static void dft(const float* in, int N, float* out) { const int sin_cos_step = SIN_COS_N_COUNT / N; for (int k = 0; k < N; k++) { float re = 0; float im = 0; for (int n = 0; n < N; n++) { int idx = (k * n * sin_cos_step) % (SIN_COS_N_COUNT); // t = 2*M_PI*k*n/N re += in[n]*global_cache.cos_vals[idx]; // cos(t) im -= in[n]*global_cache.sin_vals[idx]; // sin(t) } out[k*2 + 0] = re; out[k*2 + 1] = im; } } // Cooley-Tukey FFT // poor man's implementation - use something better // input is real-valued // output is complex-valued static void fft(float* in, int N, float* out) { if (N == 1) { out[0] = in[0]; out[1] = 0; return; } const int half_N = N / 2; if (N - half_N*2 == 1) { dft(in, N, out); return; } float* even = in + N; for (int i = 0; i < half_N; ++i) { even[i]= in[2*i]; } float* even_fft = out + 2 * N; fft(even, half_N, even_fft); float* odd = even; for (int i = 0; i < half_N; ++i) { odd[i] = in[2*i + 1]; } float* odd_fft = even_fft + N; fft(odd, half_N, odd_fft); const int sin_cos_step = SIN_COS_N_COUNT / N; for (int k = 0; k < half_N; k++) { int idx = k * sin_cos_step; // t = 2*M_PI*k/N float re = global_cache.cos_vals[idx]; // cos(t) float im = -global_cache.sin_vals[idx]; // sin(t) float re_odd = odd_fft[2*k + 0]; float im_odd = odd_fft[2*k + 1]; out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; out[2*(k + half_N) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; out[2*(k + half_N) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; } } namespace { struct whisper_mel_data { int n_len; int n_len_org; int n_mel; float * data; }; void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector & samples, int n_samples, int n_threads, const whisper_filters & filters, whisper_mel_data & mel) { const auto frame_size = WHISPER_N_FFT; const auto frame_step = WHISPER_HOP_LENGTH; std::vector fft_in(frame_size * 2, 0.0); std::vector fft_out(frame_size * 2 * 2 * 2); int n_fft = filters.n_fft; int i = ith; // make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist assert(n_fft == 1 + (frame_size / 2)); // calculate FFT only when fft_in are not all zero for (; i < std::min(n_samples / frame_step + 1, mel.n_len); i += n_threads) { const int offset = i * frame_step; // apply Hann window (~10% faster) for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) { fft_in[j] = hann[j] * samples[offset + j]; } // fill the rest with zeros if (n_samples - offset < frame_size) { std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0); } // FFT fft(fft_in.data(), frame_size, fft_out.data()); // Calculate modulus^2 of complex numbers // Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting. for (int j = 0; j < n_fft; j++) { fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]); } // mel spectrogram for (int j = 0; j < mel.n_mel; j++) { double sum = 0.0; // unroll loop (suggested by GH user @lunixbochs) int k = 0; for (k = 0; k < n_fft - 3; k += 4) { sum += fft_out[k + 0] * filters.data[j * n_fft + k + 0] + fft_out[k + 1] * filters.data[j * n_fft + k + 1] + fft_out[k + 2] * filters.data[j * n_fft + k + 2] + fft_out[k + 3] * filters.data[j * n_fft + k + 3]; } // handle n_fft remainder for (; k < n_fft; k++) { sum += fft_out[k] * filters.data[j * n_fft + k]; } sum = log10(std::max(sum, 1e-10)); mel.data[j * mel.n_len + i] = sum; } } // Otherwise fft_out are all zero double sum = log10(1e-10); for (; i < mel.n_len; i += n_threads) { for (int j = 0; j < mel.n_mel; j++) { mel.data[j * mel.n_len + i] = sum; } } } struct mel_calc_cpu : public whisper_mel_calc { ggml_backend_t m_backend; const whisper_filters & m_filters; mel_calc_cpu(ggml_backend_t backend, const whisper_filters & filters) : m_backend(backend), m_filters(filters) {} // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157 whisper_mel calculate(whisper_span ssamples, int n_threads) override { // Hann window const float * hann = global_cache.hann_window; // Calculate the length of padding int64_t stage_1_pad = WHISPER_SAMPLE_RATE * 30; int64_t stage_2_pad = WHISPER_N_FFT / 2; const int n_samples = int(ssamples.len); const float * samples = ssamples.data; // Initialize a vector and copy data from C array to it. std::vector samples_padded; samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2); std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad); // pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0); // reflective pad 200 samples at the beginning of audio std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin()); whisper_mel_data mel; mel.n_mel = m_filters.n_mel; // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936 // Calculate number of frames + remove the last frame mel.n_len = (samples_padded.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH; // Calculate semi-padded sample length to ensure compatibility mel.n_len_org = 1 + (n_samples + stage_2_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH; std::vector host_mel_data; whisper_mel ret; whisper_mel_init(ret, m_backend, mel.n_len, mel.n_len_org, mel.n_mel); if (ggml_backend_buffer_is_host(ret.buffer)) { mel.data = reinterpret_cast(ret.tensor->data); } else { host_mel_data.resize(mel.n_len * mel.n_mel); mel.data = host_mel_data.data(); } { std::vector workers(n_threads - 1); for (int iw = 0; iw < n_threads - 1; ++iw) { workers[iw] = std::thread( log_mel_spectrogram_worker_thread, iw + 1, hann, samples_padded, n_samples + stage_2_pad, n_threads, std::cref(m_filters), std::ref(mel)); } // main thread log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples + stage_2_pad, n_threads, m_filters, mel); for (int iw = 0; iw < n_threads - 1; ++iw) { workers[iw].join(); } } // clamping and normalization double mmax = -1e20; for (int i = 0; i < mel.n_mel*mel.n_len; i++) { if (mel.data[i] > mmax) { mmax = mel.data[i]; } } mmax -= 8.0; for (int i = 0; i < mel.n_mel*mel.n_len; i++) { if (mel.data[i] < mmax) { mel.data[i] = mmax; } mel.data[i] = (mel.data[i] + 4.0)/4.0; } if (!host_mel_data.empty()) { // the ret buffer is not host-accessible so we used this temporary buffer and now we need to upload it ggml_backend_tensor_set(ret.tensor, host_mel_data.data(), 0, ggml_nbytes(ret.tensor)); } return ret; } }; } static whisper_mel_calc * whisper_mel_calc_create(ggml_backend_t backend, const whisper_filters & filters) { // TODO: disabled because it relies on ggml internals that are no longer accessible (ggml-backend-impl.h, ggml-cuda/common.cuh, ..) //#if defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS) #if 0 if (ggml_backend_is_cuda(backend)) { auto ret = whisper_mel_calc_create_cuda(backend, filters); if (ret) { // run a warmup to avoid the first kernel launch overhead (thus we get the best perf even on the first run) const float warmup[256] = { 0 }; ret->calculate({ warmup, 256 }, 1); return ret; } } #endif // a specialized mel_calc could not be created // fall back to CPU return new mel_calc_cpu(backend, filters); } // split text into tokens // // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53 // // Regex (Python): // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" // // Regex (C++): // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)" // static std::vector tokenize(const whisper_vocab & vocab, const std::string & text) { std::vector words; // first split the text into words { std::string str = text; std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"; std::regex re(pat); std::smatch m; while (std::regex_search(str, m, re)) { for (auto x : m) { words.push_back(x); } str = m.suffix(); } } // find the longest tokens that form the words: std::vector tokens; for (const auto & word : words) { if (word.empty()) continue; int i = 0; int n = word.size(); while (i < n) { int j = n; bool found = false; while (j > i) { auto sub = word.substr(i, j-i); auto it = vocab.token_to_id.find(sub); if (it != vocab.token_to_id.end()) { tokens.push_back(it->second); i = j; found = true; break; } --j; } if (!found) { WHISPER_LOG_ERROR("unknown token\n"); ++i; } } } return tokens; } // // interface implementation // #ifdef WHISPER_USE_COREML // replace .bin with -encoder.mlmodelc static std::string whisper_get_coreml_path_encoder(std::string path_bin) { auto pos = path_bin.rfind('.'); if (pos != std::string::npos) { path_bin = path_bin.substr(0, pos); } // match "-qx_x" pos = path_bin.rfind('-'); if (pos != std::string::npos) { auto sub = path_bin.substr(pos); if (sub.size() == 5 && sub[1] == 'q' && sub[3] == '_') { path_bin = path_bin.substr(0, pos); } } path_bin += "-encoder.mlmodelc"; return path_bin; } #endif #ifdef WHISPER_USE_OPENVINO // replace .bin with-encoder-openvino.xml static std::string whisper_openvino_get_path_encoder(std::string path_bin) { auto pos = path_bin.rfind('.'); if (pos != std::string::npos) { path_bin = path_bin.substr(0, pos); } path_bin += "-encoder-openvino.xml"; return path_bin; } static std::string whisper_openvino_get_path_cache(std::string path_bin) { auto pos = path_bin.rfind('.'); if (pos != std::string::npos) { path_bin = path_bin.substr(0, pos); } path_bin += "-encoder-openvino-cache"; return path_bin; } #endif struct whisper_state * whisper_init_state(whisper_context * ctx) { whisper_state * state = new whisper_state; state->backends = whisper_backend_init(ctx->params); if (state->backends.empty()) { WHISPER_LOG_ERROR("%s: whisper_backend_init() failed\n", __func__); whisper_free_state(state); return nullptr; } state->mel_calc = whisper_mel_calc_create(state->backends[0], ctx->model.filters); // init 60s of random mel data { const int n_len = 2*100*WHISPER_CHUNK_SIZE; const int n_mel = ctx->model.filters.n_mel; whisper_mel_free(state->mel); whisper_mel_init(state->mel, state->backends[0], n_len, n_len, n_mel); } // at this point, we don't know yet how many decoders will be used, so we overallocate 3x ctx // in theory, there can be a case where this is not enough, but in practice it should always be enough const int factor = 3; if (!whisper_kv_cache_init(state->kv_self, state->backends[0], ctx->itype, ctx->model.hparams.n_text_state, ctx->model.hparams.n_text_layer, GGML_PAD(ctx->model.hparams.n_text_ctx, 256)*factor)) { WHISPER_LOG_ERROR("%s: whisper_kv_cache_init() failed for self-attention cache\n", __func__); whisper_free_state(state); return nullptr; } { const size_t memory_size = ggml_nbytes(state->kv_self.k) + ggml_nbytes(state->kv_self.v); WHISPER_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1e6); } if (!whisper_kv_cache_init(state->kv_cross, state->backends[0], ctx->itype, ctx->model.hparams.n_text_state, ctx->model.hparams.n_text_layer, GGML_PAD(ctx->model.hparams.n_audio_ctx, 256))) { WHISPER_LOG_ERROR("%s: whisper_kv_cache_init() failed for cross-attention cache\n", __func__); whisper_free_state(state); return nullptr; } { const size_t memory_size = ggml_nbytes(state->kv_cross.k) + ggml_nbytes(state->kv_cross.v); WHISPER_LOG_INFO("%s: kv cross size = %7.2f MB\n", __func__, memory_size / 1e6); } if (!whisper_kv_cache_init(state->kv_pad, state->backends[0], ctx->itype, ctx->model.hparams.n_audio_state, 1, GGML_PAD(ctx->model.hparams.n_audio_ctx, 256))) { WHISPER_LOG_ERROR("%s: whisper_kv_cache_init() failed for self-attention cache\n", __func__); whisper_free_state(state); return nullptr; } { const size_t memory_size = ggml_nbytes(state->kv_pad.k) + ggml_nbytes(state->kv_pad.v); WHISPER_LOG_INFO("%s: kv pad size = %7.2f MB\n", __func__, memory_size / 1e6); } // [EXPERIMENTAL] Token-level timestamps with DTW if (ctx->params.dtw_token_timestamps) { if (!aheads_masks_init(ctx->params, ctx->model.hparams, state->aheads_masks, state->backends[0])) { WHISPER_LOG_ERROR("%s: aheads_masks_init() failed for alignment heads masks\n", __func__); whisper_free_state(state); return nullptr; } const size_t memory_size = aheads_masks_nbytes(state->aheads_masks); WHISPER_LOG_INFO("%s: alignment heads masks size = %ld B\n", __func__, memory_size); } #ifdef WHISPER_USE_COREML const auto path_coreml = whisper_get_coreml_path_encoder(ctx->path_model); WHISPER_LOG_INFO("%s: loading Core ML model from '%s'\n", __func__, path_coreml.c_str()); WHISPER_LOG_INFO("%s: first run on a device may take a while ...\n", __func__); state->ctx_coreml = whisper_coreml_init(path_coreml.c_str()); if (!state->ctx_coreml) { WHISPER_LOG_ERROR("%s: failed to load Core ML model from '%s'\n", __func__, path_coreml.c_str()); #ifndef WHISPER_COREML_ALLOW_FALLBACK whisper_free_state(state); return nullptr; #endif } else { WHISPER_LOG_INFO("%s: Core ML model loaded\n", __func__); } #endif state->logits.reserve(ctx->vocab.n_vocab * ctx->model.hparams.n_text_ctx); state->batch = whisper_batch_init(ctx->model.hparams.n_text_ctx, WHISPER_MAX_DECODERS); // TAGS: WHISPER_DECODER_INIT state->decoders[0].sequence.tokens.reserve(ctx->model.hparams.n_text_ctx); state->decoders[0].probs.reserve (ctx->vocab.n_vocab); state->decoders[0].logits.reserve (ctx->vocab.n_vocab); state->decoders[0].logprobs.reserve (ctx->vocab.n_vocab); state->decoders[0].logits_id.reserve(ctx->model.hparams.n_vocab); state->decoders[0].rng = std::mt19937(0); // conv allocator { bool ok = whisper_sched_graph_init(state->sched_conv, state->backends, [&]() { return whisper_build_graph_conv(*ctx, *state, 0); }); if (!ok) { WHISPER_LOG_ERROR("%s: failed to init conv allocator\n", __func__); whisper_free_state(state); return nullptr; } WHISPER_LOG_INFO("%s: compute buffer (conv) = %7.2f MB\n", __func__, whisper_sched_size(state->sched_conv) / 1e6); } // encoder allocator if (!whisper_encode_external(*state)) { bool ok = whisper_sched_graph_init(state->sched_encode, state->backends, [&]() { return whisper_build_graph_encoder(*ctx, *state); }); if (!ok) { WHISPER_LOG_ERROR("%s: failed to init encoder allocator\n", __func__); whisper_free_state(state); return nullptr; } WHISPER_LOG_INFO("%s: compute buffer (encode) = %7.2f MB\n", __func__, whisper_sched_size(state->sched_encode) / 1e6); } // cross allocator { bool ok = whisper_sched_graph_init(state->sched_cross, state->backends, [&]() { return whisper_build_graph_cross(*ctx, *state); }); if (!ok) { WHISPER_LOG_ERROR("%s: failed to init cross allocator\n", __func__); whisper_free_state(state); return nullptr; } WHISPER_LOG_INFO("%s: compute buffer (cross) = %7.2f MB\n", __func__, whisper_sched_size(state->sched_cross) / 1e6); } // decoder allocator { bool ok = whisper_sched_graph_init(state->sched_decode, state->backends, [&]() { const auto & hparams = ctx->model.hparams; // TODO: make sure this is the worst-case scenario const int n_tokens = hparams.n_text_ctx; const int n_past = 0; whisper_batch_prep_legacy(state->batch, nullptr, n_tokens, n_past, 0); return whisper_build_graph_decoder(*ctx, *state, state->batch, ctx->params.dtw_token_timestamps, true); }); if (!ok) { WHISPER_LOG_ERROR("%s: failed to init decoder allocator\n", __func__); whisper_free_state(state); return nullptr; } WHISPER_LOG_INFO("%s: compute buffer (decode) = %7.2f MB\n", __func__, whisper_sched_size(state->sched_decode) / 1e6); } return state; } int whisper_ctx_init_openvino_encoder( struct whisper_context * ctx, const char * model_path, const char * device, const char * cache_dir) { #ifndef WHISPER_USE_OPENVINO (void)(ctx); (void)(model_path); (void)(device); (void)(cache_dir); return 1; #else if (!model_path && ctx->path_model.empty()) { WHISPER_LOG_ERROR("%s: model_path is nullptr, and ctx has no model_path set.\n", __func__); return 1; } std::string path_encoder; if (!model_path) { //if model_path is not set, attempt to find it in the same directory as ggml-.bin model path_encoder = whisper_openvino_get_path_encoder(ctx->path_model); } else { path_encoder = model_path; } std::string path_cache; if (!cache_dir) { //if cache_dir is not set, set it as a dir residing next to ggml-.bin path_cache = whisper_openvino_get_path_cache(ctx->path_model); } else { path_cache = cache_dir; } WHISPER_LOG_INFO("%s: loading OpenVINO model from '%s'\n", __func__, path_encoder.c_str()); WHISPER_LOG_INFO("%s: first run on a device may take a while ...\n", __func__); ctx->state->ctx_openvino = whisper_openvino_init(path_encoder.c_str(), device, path_cache.c_str()); if (!ctx->state->ctx_openvino) { WHISPER_LOG_ERROR("%s: failed to init OpenVINO encoder from '%s'\n", __func__, path_encoder.c_str()); return 1; } else { WHISPER_LOG_INFO("%s: OpenVINO model loaded\n", __func__); } return 0; #endif } struct whisper_context_params whisper_context_default_params() { struct whisper_context_params result = { /*.use_gpu =*/ true, /*.flash_attn =*/ false, /*.gpu_device =*/ 0, /*.dtw_token_timestamps =*/ false, /*.dtw_aheads_preset =*/ WHISPER_AHEADS_NONE, /*.dtw_n_top =*/ -1, /*.dtw_aheads =*/ { /*.n_heads =*/ 0, /*.heads =*/ NULL, }, /*.dtw_mem_size =*/ 1024*1024*128, }; return result; } struct whisper_context * whisper_init_from_file_with_params_no_state(const char * path_model, struct whisper_context_params params) { WHISPER_LOG_INFO("%s: loading model from '%s'\n", __func__, path_model); #ifdef _MSC_VER // Convert UTF-8 path to wide string (UTF-16) for Windows, resolving character encoding issues. std::wstring_convert> converter; std::wstring path_model_wide = converter.from_bytes(path_model); auto fin = std::ifstream(path_model_wide, std::ios::binary); #else auto fin = std::ifstream(path_model, std::ios::binary); #endif if (!fin) { WHISPER_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_model); return nullptr; } whisper_model_loader loader = {}; loader.context = &fin; loader.read = [](void * ctx, void * output, size_t read_size) { std::ifstream * fin = (std::ifstream*)ctx; fin->read((char *)output, read_size); return read_size; }; loader.eof = [](void * ctx) { std::ifstream * fin = (std::ifstream*)ctx; return fin->eof(); }; loader.close = [](void * ctx) { std::ifstream * fin = (std::ifstream*)ctx; fin->close(); }; auto ctx = whisper_init_with_params_no_state(&loader, params); if (ctx) { ctx->path_model = path_model; } return ctx; } struct whisper_context * whisper_init_from_buffer_with_params_no_state(void * buffer, size_t buffer_size, struct whisper_context_params params) { struct buf_context { uint8_t* buffer; size_t size; size_t current_offset; }; buf_context ctx = { reinterpret_cast(buffer), buffer_size, 0 }; WHISPER_LOG_INFO("%s: loading model from buffer\n", __func__); whisper_model_loader loader = {}; loader.context = &ctx; loader.read = [](void * ctx, void * output, size_t read_size) { buf_context * buf = reinterpret_cast(ctx); size_t size_to_copy = buf->current_offset + read_size < buf->size ? read_size : buf->size - buf->current_offset; memcpy(output, buf->buffer + buf->current_offset, size_to_copy); buf->current_offset += size_to_copy; return size_to_copy; }; loader.eof = [](void * ctx) { buf_context * buf = reinterpret_cast(ctx); return buf->current_offset >= buf->size; }; loader.close = [](void * /*ctx*/) { }; return whisper_init_with_params_no_state(&loader, params); } struct whisper_context * whisper_init_with_params_no_state(struct whisper_model_loader * loader, struct whisper_context_params params) { ggml_time_init(); if (params.flash_attn && params.dtw_token_timestamps) { WHISPER_LOG_WARN("%s: dtw_token_timestamps is not supported with flash_attn - disabling\n", __func__); params.dtw_token_timestamps = false; } WHISPER_LOG_INFO("%s: use gpu = %d\n", __func__, params.use_gpu); WHISPER_LOG_INFO("%s: flash attn = %d\n", __func__, params.flash_attn); WHISPER_LOG_INFO("%s: gpu_device = %d\n", __func__, params.gpu_device); WHISPER_LOG_INFO("%s: dtw = %d\n", __func__, params.dtw_token_timestamps); whisper_context * ctx = new whisper_context; ctx->params = params; if (!whisper_model_load(loader, *ctx)) { loader->close(loader->context); WHISPER_LOG_ERROR("%s: failed to load model\n", __func__); delete ctx; return nullptr; } loader->close(loader->context); return ctx; } struct whisper_context * whisper_init_from_file_with_params(const char * path_model, struct whisper_context_params params) { whisper_context * ctx = whisper_init_from_file_with_params_no_state(path_model, params); if (!ctx) { return nullptr; } ctx->state = whisper_init_state(ctx); if (!ctx->state) { whisper_free(ctx); return nullptr; } return ctx; } struct whisper_context * whisper_init_from_buffer_with_params(void * buffer, size_t buffer_size, struct whisper_context_params params) { whisper_context * ctx = whisper_init_from_buffer_with_params_no_state(buffer, buffer_size, params); if (!ctx) { return nullptr; } ctx->state = whisper_init_state(ctx); if (!ctx->state) { whisper_free(ctx); return nullptr; } return ctx; } struct whisper_context * whisper_init_with_params(struct whisper_model_loader * loader, struct whisper_context_params params) { whisper_context * ctx = whisper_init_with_params_no_state(loader, params); if (!ctx) { return nullptr; } ctx->state = whisper_init_state(ctx); if (!ctx->state) { whisper_free(ctx); return nullptr; } return ctx; } struct whisper_context * whisper_init_from_file(const char * path_model) { return whisper_init_from_file_with_params(path_model, whisper_context_default_params()); } struct whisper_context * whisper_init_from_buffer(void * buffer, size_t buffer_size) { return whisper_init_from_buffer_with_params(buffer, buffer_size, whisper_context_default_params()); } struct whisper_context * whisper_init(struct whisper_model_loader * loader) { return whisper_init_with_params(loader, whisper_context_default_params()); } struct whisper_context * whisper_init_from_file_no_state(const char * path_model) { return whisper_init_from_file_with_params_no_state(path_model, whisper_context_default_params()); } struct whisper_context * whisper_init_from_buffer_no_state(void * buffer, size_t buffer_size) { return whisper_init_from_buffer_with_params_no_state(buffer, buffer_size, whisper_context_default_params()); } struct whisper_context * whisper_init_no_state(struct whisper_model_loader * loader) { return whisper_init_with_params_no_state(loader, whisper_context_default_params()); } void whisper_free_state(struct whisper_state * state) { if (state) { whisper_kv_cache_free(state->kv_self); whisper_kv_cache_free(state->kv_cross); whisper_kv_cache_free(state->kv_pad); whisper_mel_free(state->mel); delete state->mel_calc; state->mel_calc = nullptr; delete state->mel_calc_fallback; state->mel_calc_fallback = nullptr; #ifdef WHISPER_USE_COREML if (state->ctx_coreml != nullptr) { whisper_coreml_free(state->ctx_coreml); state->ctx_coreml = nullptr; } #endif #ifdef WHISPER_USE_OPENVINO if (state->ctx_openvino != nullptr) { whisper_openvino_free(state->ctx_openvino); state->ctx_openvino = nullptr; } #endif whisper_batch_free(state->batch); ggml_backend_sched_free(state->sched_conv.sched); ggml_backend_sched_free(state->sched_encode.sched); ggml_backend_sched_free(state->sched_cross.sched); ggml_backend_sched_free(state->sched_decode.sched); for (auto & backend : state->backends) { ggml_backend_free(backend); } // [EXPERIMENTAL] Token-level timestamps with DTW aheads_masks_free(state->aheads_masks); delete state; } } void whisper_free(struct whisper_context * ctx) { if (ctx) { ggml_free(ctx->model.ctx); ggml_backend_buffer_free(ctx->model.buffer); whisper_free_state(ctx->state); delete ctx; } } void whisper_free_context_params(struct whisper_context_params * params) { if (params) { delete params; } } void whisper_free_params(struct whisper_full_params * params) { if (params) { delete params; } } int whisper_pcm_to_mel_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) { const int64_t t_start_us = ggml_time_us(); whisper_mel_free(state->mel); if (n_samples <= 5 * 60 * WHISPER_SAMPLE_RATE) { // calculate mel spectrogram for lengths up to 5 minutes on the most optimal mel calculator state->mel = state->mel_calc->calculate({samples, n_samples}, n_threads); } else { // calcuate mel spectrogram for longer audios on the CPU // 1. gpu calculations may use hundreds of megabytes of memory for longer audios so we're being conservative // with our gpu demands // 2. the time to transcribe audios this long will be dominated by the decoding time, so the mel calculation // taking longer is not a major concern if (!state->mel_calc_fallback) { state->mel_calc_fallback = new mel_calc_cpu(state->backends[0], ctx->model.filters); } state->mel = state->mel_calc_fallback->calculate({samples, n_samples}, n_threads); } state->t_mel_us += ggml_time_us() - t_start_us; // Dump log_mel_spectrogram //{ // auto& mel = state->mel; // std::ofstream outFile("log_mel_spectrogram.json"); // outFile << "["; // for (uint64_t i = 0; i < mel.data.size() - 1; i++) { // outFile << mel.data[i] << ", "; // } // outFile << mel.data[mel.data.size() - 1] << "]"; // outFile.close(); //} return 0; } int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) { return whisper_pcm_to_mel_with_state(ctx, ctx->state, samples, n_samples, n_threads); } int whisper_set_mel_with_state( struct whisper_context * ctx, struct whisper_state * state, const float * data, int n_len, int n_mel) { if (n_mel != ctx->model.filters.n_mel) { WHISPER_LOG_ERROR("%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, ctx->model.filters.n_mel); return -1; } whisper_mel_free(state->mel); whisper_mel_init(state->mel, state->backends[0], n_len, n_len, n_mel); ggml_backend_tensor_set(state->mel.tensor, data, 0, ggml_nbytes(state->mel.tensor)); return 0; } int whisper_set_mel( struct whisper_context * ctx, const float * data, int n_len, int n_mel) { return whisper_set_mel_with_state(ctx, ctx->state, data, n_len, n_mel); } int whisper_encode_with_state(struct whisper_context * ctx, struct whisper_state * state, int offset, int n_threads) { if (!whisper_encode_internal(*ctx, *state, offset, n_threads, nullptr, nullptr)) { WHISPER_LOG_ERROR("%s: failed to eval\n", __func__); return -1; } return 0; } int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) { if (!whisper_encode_internal(*ctx, *ctx->state, offset, n_threads, nullptr, nullptr)) { WHISPER_LOG_ERROR("%s: failed to eval\n", __func__); return -1; } return 0; } int whisper_decode_with_state(struct whisper_context * ctx, struct whisper_state * state, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) { whisper_batch_prep_legacy(state->batch, tokens, n_tokens, n_past, 0); whisper_kv_cache_seq_rm(state->kv_self, 0, n_past, -1); if (!whisper_decode_internal(*ctx, *state, state->batch, n_threads, false, nullptr, nullptr)) { WHISPER_LOG_ERROR("%s: failed to eval\n", __func__); return 1; } return 0; } int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) { if (ctx->state == nullptr) { WHISPER_LOG_ERROR("%s: ERROR state was not loaded.\n", __func__); return -1; } return whisper_decode_with_state(ctx, ctx->state, tokens, n_tokens, n_past, n_threads); } int whisper_tokenize(struct whisper_context * ctx, const char * text, whisper_token * tokens, int n_max_tokens) { const auto res = tokenize(ctx->vocab, text); if (n_max_tokens < (int) res.size()) { WHISPER_LOG_ERROR("%s: too many resulting tokens: %d (max %d)\n", __func__, (int) res.size(), n_max_tokens); return -(int) res.size(); } for (int i = 0; i < (int) res.size(); i++) { tokens[i] = res[i]; } return res.size(); } int whisper_token_count(struct whisper_context * ctx, const char * text) { return -whisper_tokenize(ctx, text, NULL, 0); } int whisper_lang_max_id(void) { auto max_id = 0; for (const auto & kv : g_lang) { max_id = std::max(max_id, kv.second.first); } return max_id; } int whisper_lang_id(const char * lang) { if (!g_lang.count(lang)) { for (const auto & kv : g_lang) { if (kv.second.second == lang) { return kv.second.first; } } WHISPER_LOG_ERROR("%s: unknown language '%s'\n", __func__, lang); return -1; } return g_lang.at(lang).first; } const char * whisper_lang_str(int id) { for (const auto & kv : g_lang) { if (kv.second.first == id) { return kv.first.c_str(); } } WHISPER_LOG_ERROR("%s: unknown language id %d\n", __func__, id); return nullptr; } const char * whisper_lang_str_full(int id) { for (const auto & kv : g_lang) { if (kv.second.first == id) { return kv.second.second.c_str(); } } WHISPER_LOG_ERROR("%s: unknown language id %d\n", __func__, id); return nullptr; } int whisper_lang_auto_detect_with_state( struct whisper_context * ctx, struct whisper_state * state, int offset_ms, int n_threads, float * lang_probs) { const int seek = offset_ms/10; if (seek < 0) { WHISPER_LOG_ERROR("%s: offset %dms is before the start of the audio\n", __func__, offset_ms); return -1; } if (seek >= state->mel.n_len_org) { WHISPER_LOG_ERROR("%s: offset %dms is past the end of the audio (%dms)\n", __func__, offset_ms, state->mel.n_len_org*10); return -2; } // run the encoder if (whisper_encode_with_state(ctx, state, seek, n_threads) != 0) { WHISPER_LOG_ERROR("%s: failed to encode\n", __func__); return -6; } const std::vector prompt = { whisper_token_sot(ctx) }; if (whisper_decode_with_state(ctx, state, prompt.data(), prompt.size(), 0, n_threads) != 0) { WHISPER_LOG_ERROR("%s: failed to decode\n", __func__); return -7; } auto & logits_id = state->decoders[0].logits_id; logits_id.clear(); for (const auto & kv : g_lang) { const auto token_lang = whisper_token_lang(ctx, kv.second.first); logits_id.emplace_back(state->logits[token_lang], kv.second.first); } // sort descending { using pair_type = std::remove_reference::type::value_type; std::sort(logits_id.begin(), logits_id.end(), [](const pair_type & a, const pair_type & b) { return a.first > b.first; }); } // softmax { const auto max = logits_id[0].first; double sum = 0.0f; for (auto & kv : logits_id) { kv.first = exp(kv.first - max); sum += kv.first; } for (auto & kv : logits_id) { kv.first /= sum; } } { for (const auto & prob : logits_id) { if (lang_probs) { lang_probs[prob.second] = prob.first; } //printf("%s: lang %2d (%3s): %f\n", __func__, prob.second, whisper_lang_str(prob.second), prob.first); } } return logits_id[0].second; } int whisper_lang_auto_detect( struct whisper_context * ctx, int offset_ms, int n_threads, float * lang_probs) { return whisper_lang_auto_detect_with_state(ctx, ctx->state, offset_ms, n_threads, lang_probs); } int whisper_model_n_vocab(struct whisper_context * ctx) { return ctx->model.hparams.n_vocab; } int whisper_model_n_audio_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_ctx; } int whisper_model_n_audio_state(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_state; } int whisper_model_n_audio_head(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_head; } int whisper_model_n_audio_layer(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_layer; } int whisper_model_n_text_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_text_ctx; } int whisper_model_n_text_state(struct whisper_context * ctx) { return ctx->model.hparams.n_text_state; } int whisper_model_n_text_head(struct whisper_context * ctx) { return ctx->model.hparams.n_text_head; } int whisper_model_n_text_layer(struct whisper_context * ctx) { return ctx->model.hparams.n_text_layer; } int whisper_model_n_mels(struct whisper_context * ctx) { return ctx->model.hparams.n_mels; } int whisper_model_ftype(struct whisper_context * ctx) { return ctx->model.hparams.ftype; } int whisper_model_type(struct whisper_context * ctx) { return ctx->model.type; } const char *whisper_model_type_readable(struct whisper_context * ctx) { switch (ctx->model.type) { case e_model::MODEL_TINY: return "tiny"; case e_model::MODEL_BASE: return "base"; case e_model::MODEL_SMALL: return "small"; case e_model::MODEL_MEDIUM: return "medium"; case e_model::MODEL_LARGE: return "large"; default: return "unknown"; } } int whisper_n_len_from_state(struct whisper_state * state) { return state->mel.n_len_org; } int whisper_n_len(struct whisper_context * ctx) { return ctx->state->mel.n_len_org; } int whisper_n_vocab(struct whisper_context * ctx) { return ctx->vocab.n_vocab; } int whisper_n_text_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_text_ctx; } int whisper_n_audio_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_ctx; } int whisper_is_multilingual(struct whisper_context * ctx) { return ctx->vocab.is_multilingual() ? 1 : 0; } float * whisper_get_logits(struct whisper_context * ctx) { return ctx->state->logits.data(); } float * whisper_get_logits_from_state(struct whisper_state * state) { return state->logits.data(); } const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token) { return ctx->vocab.id_to_token.at(token).c_str(); } whisper_token whisper_token_eot(struct whisper_context * ctx) { return ctx->vocab.token_eot; } whisper_token whisper_token_sot(struct whisper_context * ctx) { return ctx->vocab.token_sot; } whisper_token whisper_token_solm(struct whisper_context * ctx) { return ctx->vocab.token_solm; } whisper_token whisper_token_prev(struct whisper_context * ctx) { return ctx->vocab.token_prev; } whisper_token whisper_token_nosp(struct whisper_context * ctx) { return ctx->vocab.token_nosp; } whisper_token whisper_token_not(struct whisper_context * ctx) { return ctx->vocab.token_not; } whisper_token whisper_token_beg(struct whisper_context * ctx) { return ctx->vocab.token_beg; } whisper_token whisper_token_lang(struct whisper_context * ctx, int lang_id) { return whisper_token_sot(ctx) + 1 + lang_id; } whisper_token whisper_token_translate(struct whisper_context * ctx) { return ctx->vocab.token_translate; } whisper_token whisper_token_transcribe(struct whisper_context * ctx) { return ctx->vocab.token_transcribe; } void whisper_print_timings(struct whisper_context * ctx) { const int64_t t_end_us = ggml_time_us(); WHISPER_LOG_INFO("\n"); WHISPER_LOG_INFO("%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0f); if (ctx->state != nullptr) { const int32_t n_sample = std::max(1, ctx->state->n_sample); const int32_t n_encode = std::max(1, ctx->state->n_encode); const int32_t n_decode = std::max(1, ctx->state->n_decode); const int32_t n_batchd = std::max(1, ctx->state->n_batchd); const int32_t n_prompt = std::max(1, ctx->state->n_prompt); WHISPER_LOG_INFO("%s: fallbacks = %3d p / %3d h\n", __func__, ctx->state->n_fail_p, ctx->state->n_fail_h); WHISPER_LOG_INFO("%s: mel time = %8.2f ms\n", __func__, ctx->state->t_mel_us / 1000.0f); WHISPER_LOG_INFO("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_sample_us, n_sample, 1e-3f * ctx->state->t_sample_us / n_sample); WHISPER_LOG_INFO("%s: encode time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_encode_us, n_encode, 1e-3f * ctx->state->t_encode_us / n_encode); WHISPER_LOG_INFO("%s: decode time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_decode_us, n_decode, 1e-3f * ctx->state->t_decode_us / n_decode); WHISPER_LOG_INFO("%s: batchd time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_batchd_us, n_batchd, 1e-3f * ctx->state->t_batchd_us / n_batchd); WHISPER_LOG_INFO("%s: prompt time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_prompt_us, n_prompt, 1e-3f * ctx->state->t_prompt_us / n_prompt); } WHISPER_LOG_INFO("%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f); } void whisper_reset_timings(struct whisper_context * ctx) { ctx->t_start_us = ggml_time_us(); if (ctx->state != nullptr) { ctx->state->t_mel_us = 0; ctx->state->t_sample_us = 0; ctx->state->t_encode_us = 0; ctx->state->t_decode_us = 0; ctx->state->t_batchd_us = 0; ctx->state->t_prompt_us = 0; ctx->state->n_sample = 0; ctx->state->n_encode = 0; ctx->state->n_decode = 0; ctx->state->n_batchd = 0; ctx->state->n_prompt = 0; } } static int whisper_has_coreml(void) { #ifdef WHISPER_USE_COREML return 1; #else return 0; #endif } static int whisper_has_openvino(void) { #ifdef WHISPER_USE_OPENVINO return 1; #else return 0; #endif } const char * whisper_print_system_info(void) { static std::string s; s = ""; s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; s += "METAL = " + std::to_string(ggml_cpu_has_metal()) + " | "; s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; s += "CUDA = " + std::to_string(ggml_cpu_has_cuda()) + " | "; s += "COREML = " + std::to_string(whisper_has_coreml()) + " | "; s += "OPENVINO = " + std::to_string(whisper_has_openvino()) + " | "; s += "CANN = " + std::to_string(ggml_cpu_has_cann()) ; return s.c_str(); } ////////////////////////////////// // Grammar - ported from llama.cpp ////////////////////////////////// // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as // pointer. If an invalid sequence is encountered, returns `whisper_partial_utf8.n_remain == -1`. static std::pair, whisper_partial_utf8> decode_utf8( const char * src, whisper_partial_utf8 partial_start) { static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; const char * pos = src; std::vector code_points; uint32_t value = partial_start.value; int n_remain = partial_start.n_remain; // continue previous decode, if applicable while (*pos != 0 && n_remain > 0) { uint8_t next_byte = static_cast(*pos); if ((next_byte >> 6) != 2) { // invalid sequence, abort code_points.push_back(0); return std::make_pair(std::move(code_points), whisper_partial_utf8{ 0, -1 }); } value = (value << 6) + (next_byte & 0x3F); ++pos; --n_remain; } if (partial_start.n_remain > 0 && n_remain == 0) { code_points.push_back(value); } // decode any subsequent utf-8 sequences, which may end in an incomplete one while (*pos != 0) { uint8_t first_byte = static_cast(*pos); uint8_t highbits = first_byte >> 4; n_remain = lookup[highbits] - 1; if (n_remain < 0) { // invalid sequence, abort code_points.clear(); code_points.push_back(0); return std::make_pair(std::move(code_points), whisper_partial_utf8{ 0, n_remain }); } uint8_t mask = (1 << (7 - n_remain)) - 1; value = first_byte & mask; ++pos; while (*pos != 0 && n_remain > 0) { value = (value << 6) + (static_cast(*pos) & 0x3F); ++pos; --n_remain; } if (n_remain == 0) { code_points.push_back(value); } } code_points.push_back(0); return std::make_pair(std::move(code_points), whisper_partial_utf8{ value, n_remain }); } // returns true iff pos points to the end of one of the definitions of a rule static bool whisper_grammar_is_end_of_sequence(const whisper_grammar_element * pos) { switch (pos->type) { case WHISPER_GRETYPE_END: return true; // NOLINT case WHISPER_GRETYPE_ALT: return true; // NOLINT default: return false; } } // returns true iff chr satisfies the char range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static std::pair whisper_grammar_match_char( const whisper_grammar_element * pos, const uint32_t chr) { bool found = false; bool is_positive_char = pos->type == WHISPER_GRETYPE_CHAR; WHISPER_ASSERT(is_positive_char || pos->type == WHISPER_GRETYPE_CHAR_NOT); // NOLINT do { if (pos[1].type == WHISPER_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] found = found || (pos->value <= chr && chr <= pos[1].value); pos += 2; } else { // exact char match, e.g. [a] or "a" found = found || pos->value == chr; pos += 1; } } while (pos->type == WHISPER_GRETYPE_CHAR_ALT); return std::make_pair(found == is_positive_char, pos); } // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char // range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static bool whisper_grammar_match_partial_char( const whisper_grammar_element * pos, const whisper_partial_utf8 partial_utf8) { bool is_positive_char = pos->type == WHISPER_GRETYPE_CHAR; WHISPER_ASSERT(is_positive_char || pos->type == WHISPER_GRETYPE_CHAR_NOT); uint32_t partial_value = partial_utf8.value; int n_remain = partial_utf8.n_remain; // invalid sequence or 7-bit char split across 2 bytes (overlong) if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) { return false; } // range of possible code points this partial UTF-8 sequence could complete to uint32_t low = partial_value << (n_remain * 6); uint32_t high = low | ((1 << (n_remain * 6)) - 1); if (low == 0) { if (n_remain == 2) { low = 1 << 11; } else if (n_remain == 3) { low = 1 << 16; } } do { if (pos[1].type == WHISPER_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] if (pos->value <= high && low <= pos[1].value) { return is_positive_char; } pos += 2; } else { // exact char match, e.g. [a] or "a" if (low <= pos->value && pos->value <= high) { return is_positive_char; } pos += 1; } } while (pos->type == WHISPER_GRETYPE_CHAR_ALT); return !is_positive_char; } // transforms a grammar pushdown stack into N possible stacks, all ending // at a character range (terminal element) static void whisper_grammar_advance_stack( const std::vector> & rules, const std::vector & stack, std::vector> & new_stacks) { if (stack.empty()) { new_stacks.push_back(stack); return; } const whisper_grammar_element * pos = stack.back(); switch (pos->type) { case WHISPER_GRETYPE_RULE_REF: { const size_t rule_id = static_cast(pos->value); const whisper_grammar_element * subpos = rules[rule_id].data(); do { // init new stack without the top (pos) std::vector new_stack(stack.begin(), stack.end() - 1); if (!whisper_grammar_is_end_of_sequence(pos + 1)) { // if this rule ref is followed by another element, add that to stack new_stack.push_back(pos + 1); } if (!whisper_grammar_is_end_of_sequence(subpos)) { // if alternate is nonempty, add to stack new_stack.push_back(subpos); } whisper_grammar_advance_stack(rules, new_stack, new_stacks); while (!whisper_grammar_is_end_of_sequence(subpos)) { // scan to end of alternate def subpos++; } if (subpos->type == WHISPER_GRETYPE_ALT) { // there's another alternate def of this rule to process subpos++; } else { break; } } while (true); break; } case WHISPER_GRETYPE_CHAR: case WHISPER_GRETYPE_CHAR_NOT: new_stacks.push_back(stack); break; default: // end of alternate (WHISPER_GRETYPE_END, WHISPER_GRETYPE_ALT) or middle of char range // (WHISPER_GRETYPE_CHAR_ALT, WHISPER_GRETYPE_CHAR_RNG_UPPER); stack should never be left on // those WHISPER_ASSERT(false); } } // takes a set of possible pushdown stacks on a grammar, which are required to // be positioned at a character range (see `whisper_grammar_advance_stack`), and // produces the N possible stacks if the given char is accepted at those // positions static std::vector> whisper_grammar_accept( const std::vector> & rules, const std::vector> & stacks, const uint32_t chr) { std::vector> new_stacks; for (const auto & stack : stacks) { if (stack.empty()) { continue; } auto match = whisper_grammar_match_char(stack.back(), chr); if (match.first) { const whisper_grammar_element * pos = match.second; // update top of stack to next element, if any std::vector new_stack(stack.begin(), stack.end() - 1); if (!whisper_grammar_is_end_of_sequence(pos)) { new_stack.push_back(pos); } whisper_grammar_advance_stack(rules, new_stack, new_stacks); } } return new_stacks; } static std::vector whisper_grammar_reject_candidates( const std::vector> & rules, const std::vector> & stacks, const std::vector & candidates); static std::vector whisper_grammar_reject_candidates_for_stack( const std::vector> & rules, const std::vector & stack, const std::vector & candidates) { std::vector rejects; if (stack.empty()) { for (auto tok : candidates) { if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { rejects.push_back(tok); } } return rejects; } const whisper_grammar_element * stack_pos = stack.back(); std::vector next_candidates; for (auto tok : candidates) { if (*tok.code_points == 0) { // reached end of full codepoints in token, reject iff it ended in a partial sequence // that cannot satisfy this position in grammar if (tok.partial_utf8.n_remain != 0 && !whisper_grammar_match_partial_char(stack_pos, tok.partial_utf8)) { rejects.push_back(tok); } } else if (whisper_grammar_match_char(stack_pos, *tok.code_points).first) { next_candidates.push_back({ tok.id, tok.code_points + 1, tok.partial_utf8 }); } else { rejects.push_back(tok); } } const auto * stack_pos_after = whisper_grammar_match_char(stack_pos, 0).second; // update top of stack to next element, if any std::vector stack_after(stack.begin(), stack.end() - 1); if (!whisper_grammar_is_end_of_sequence(stack_pos_after)) { stack_after.push_back(stack_pos_after); } std::vector> next_stacks; whisper_grammar_advance_stack(rules, stack_after, next_stacks); auto next_rejects = whisper_grammar_reject_candidates(rules, next_stacks, next_candidates); for (auto tok : next_rejects) { rejects.push_back({ tok.id, tok.code_points - 1, tok.partial_utf8 }); } return rejects; } static std::vector whisper_grammar_reject_candidates( const std::vector> & rules, const std::vector> & stacks, const std::vector & candidates) { if (candidates.empty() || stacks.empty()) { return std::vector(); } auto rejects = whisper_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); for (size_t i = 1, size = stacks.size(); i < size; ++i) { rejects = whisper_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); } return rejects; } static struct whisper_grammar whisper_grammar_init( const whisper_grammar_element ** rules, size_t n_rules, size_t i_start_rule) { const whisper_grammar_element * pos; // copy rule definitions into vectors std::vector> vec_rules(n_rules); for (size_t i = 0; i < n_rules; i++) { for (pos = rules[i]; pos->type != WHISPER_GRETYPE_END; pos++) { vec_rules[i].push_back(*pos); } vec_rules[i].push_back({WHISPER_GRETYPE_END, 0}); } // loop over alternates of start rule to build initial stacks std::vector> stacks; pos = rules[i_start_rule]; do { std::vector stack; if (!whisper_grammar_is_end_of_sequence(pos)) { // if alternate is nonempty, add to stack stack.push_back(pos); } whisper_grammar_advance_stack(vec_rules, stack, stacks); while (!whisper_grammar_is_end_of_sequence(pos)) { // scan to end of alternate def pos++; } if (pos->type == WHISPER_GRETYPE_ALT) { // there's another alternate def of this rule to process pos++; } else { break; } } while (true); return { std::move(vec_rules), std::move(stacks), {} }; } static void whisper_suppress_invalid_grammar( whisper_context & ctx, const whisper_full_params & params, std::vector & logits, const whisper_grammar & grammar) { if (grammar.rules.empty() || grammar.stacks.empty()) { return; } //bool allow_eot = false; //for (const auto & stack : grammar.stacks) { // if (stack.empty()) { // allow_eot = true; // break; // } //} const whisper_token eot = whisper_token_eot(&ctx); std::vector, whisper_partial_utf8>> candidates_decoded; std::vector candidates_grammar; for (whisper_token id = 0; id < eot; ++id) { const std::string & text = ctx.vocab.id_to_token[id]; if (!text.empty()) { candidates_decoded.push_back(decode_utf8(text.c_str(), grammar.partial_utf8)); candidates_grammar.push_back({ id, candidates_decoded.back().first.data(), candidates_decoded.back().second }); } } const auto rejects = whisper_grammar_reject_candidates(grammar.rules, grammar.stacks, candidates_grammar); for (const auto & reject : rejects) { logits[reject.id] -= params.grammar_penalty; } // when the grammar allows a continuation, we penalize the end-of-text token //if (!allow_eot) { // logits[eot] -= params.grammar_penalty; //} //fprintf(stderr, "Allowed: (%zu tokens)\n", size - rejects.size()); } static void whisper_grammar_accept_token(whisper_context & ctx, whisper_grammar & grammar, whisper_token token) { if (grammar.rules.empty() || grammar.stacks.empty()) { return; } //fprintf(stderr, "Accept: '%s'\n", ctx.vocab.id_to_token[token].c_str()); const std::string & text = ctx.vocab.id_to_token[token]; if (text.rfind("[_", 0) == 0) { // fprintf(stderr, " (skipped)\n"); return; } // fprintf(stderr, "\n"); // Note terminating 0 in decoded string const auto decoded = decode_utf8(text.c_str(), grammar.partial_utf8); const auto & code_points = decoded.first; for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { grammar.stacks = whisper_grammar_accept(grammar.rules, grammar.stacks, *it); } grammar.partial_utf8 = decoded.second; } ////////////// // END grammar ////////////// //////////////////////////////////////////////////////////////////////////// struct whisper_context_params * whisper_context_default_params_by_ref(void) { struct whisper_context_params params = whisper_context_default_params(); struct whisper_context_params* result = new whisper_context_params(); *result = params; return result; } struct whisper_full_params * whisper_full_default_params_by_ref(enum whisper_sampling_strategy strategy) { struct whisper_full_params params = whisper_full_default_params(strategy); struct whisper_full_params* result = new whisper_full_params(); *result = params; return result; } struct whisper_full_params whisper_full_default_params(enum whisper_sampling_strategy strategy) { struct whisper_full_params result = { /*.strategy =*/ strategy, /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), /*.n_max_text_ctx =*/ 16384, /*.offset_ms =*/ 0, /*.duration_ms =*/ 0, /*.translate =*/ false, /*.no_context =*/ true, /*.no_timestamps =*/ false, /*.single_segment =*/ false, /*.print_special =*/ false, /*.print_progress =*/ true, /*.print_realtime =*/ false, /*.print_timestamps =*/ true, /*.token_timestamps =*/ false, /*.thold_pt =*/ 0.01f, /*.thold_ptsum =*/ 0.01f, /*.max_len =*/ 0, /*.split_on_word =*/ false, /*.max_tokens =*/ 0, /*.debug_mode =*/ false, /*.audio_ctx =*/ 0, /*.tdrz_enable =*/ false, /* suppress_regex =*/ nullptr, /*.initial_prompt =*/ nullptr, /*.prompt_tokens =*/ nullptr, /*.prompt_n_tokens =*/ 0, /*.language =*/ "en", /*.detect_language =*/ false, /*.suppress_blank =*/ true, /*.suppress_non_speech_tokens =*/ false, /*.temperature =*/ 0.0f, /*.max_initial_ts =*/ 1.0f, /*.length_penalty =*/ -1.0f, /*.temperature_inc =*/ 0.2f, /*.entropy_thold =*/ 2.4f, /*.logprob_thold =*/ -1.0f, /*.no_speech_thold =*/ 0.6f, /*.greedy =*/ { /*.best_of =*/ -1, }, /*.beam_search =*/ { /*.beam_size =*/ -1, /*.patience =*/ -1.0f, }, /*.new_segment_callback =*/ nullptr, /*.new_segment_callback_user_data =*/ nullptr, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, /*.encoder_begin_callback =*/ nullptr, /*.encoder_begin_callback_user_data =*/ nullptr, /*.abort_callback =*/ nullptr, /*.abort_callback_user_data =*/ nullptr, /*.logits_filter_callback =*/ nullptr, /*.logits_filter_callback_user_data =*/ nullptr, /*.grammar_rules =*/ nullptr, /*.n_grammar_rules =*/ 0, /*.i_start_rule =*/ 0, /*.grammar_penalty =*/ 100.0f, }; switch (strategy) { case WHISPER_SAMPLING_GREEDY: { result.greedy = { /*.best_of =*/ 5, }; } break; case WHISPER_SAMPLING_BEAM_SEARCH: { result.beam_search = { /*.beam_size =*/ 5, /*.patience =*/ -1.0f, }; } break; } return result; } // forward declarations static std::vector get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window); static void whisper_exp_compute_token_level_timestamps( struct whisper_context & ctx, struct whisper_state & state, int i_segment, float thold_pt, float thold_ptsum); static inline bool should_split_on_word(const char * txt, bool split_on_word) { if (!split_on_word) return true; return txt[0] == ' '; } static void whisper_exp_compute_token_level_timestamps_dtw( struct whisper_context * ctx, struct whisper_state * state, struct whisper_full_params params, int i_segment, size_t n_segments, int seek, int n_frames, int medfilt_width, int n_threads); // wrap the last segment to max_len characters // returns the number of new segments static int whisper_wrap_segment(struct whisper_context & ctx, struct whisper_state & state, int max_len, bool split_on_word) { auto segment = state.result_all.back(); int res = 1; int acc = 0; std::string text; for (int i = 0; i < (int) segment.tokens.size(); i++) { const auto & token = segment.tokens[i]; if (token.id >= whisper_token_eot(&ctx)) { continue; } const auto txt = whisper_token_to_str(&ctx, token.id); const int cur = strlen(txt); if (acc + cur > max_len && i > 0 && should_split_on_word(txt, split_on_word)) { state.result_all.back().text = std::move(text); state.result_all.back().t1 = token.t0; state.result_all.back().tokens.resize(i); state.result_all.back().speaker_turn_next = false; state.result_all.push_back({}); state.result_all.back().t0 = token.t0; state.result_all.back().t1 = segment.t1; // add tokens [i, end] to the new segment state.result_all.back().tokens.insert( state.result_all.back().tokens.end(), segment.tokens.begin() + i, segment.tokens.end()); state.result_all.back().speaker_turn_next = segment.speaker_turn_next; acc = 0; text = ""; segment = state.result_all.back(); i = -1; res++; } else { acc += cur; text += txt; } } state.result_all.back().text = std::move(text); return res; } static const std::vector non_speech_tokens = { "\"", "#", "(", ")", "*", "+", "/", ":", ";", "<", "=", ">", "@", "[", "\\", "]", "^", "_", "`", "{", "|", "}", "~", "「", "」", "『", "』", "<<", ">>", "<<<", ">>>", "--", "---", "-(", "-[", "('", "(\"", "((", "))", "(((", ")))", "[[", "]]", "{{", "}}", "♪♪", "♪♪♪","♩", "♪", "♫", "♬", "♭", "♮", "♯" }; // process the logits for the selected decoder // - applies logit filters // - computes logprobs and probs // TODO: optimize static void whisper_process_logits( struct whisper_context & ctx, struct whisper_state & state, struct whisper_decoder & decoder, const struct whisper_full_params params, float temperature) { const auto & vocab = ctx.vocab; const auto & tokens_cur = decoder.sequence.tokens; const bool is_initial = tokens_cur.size() == 0; const int n_logits = vocab.id_to_token.size(); WHISPER_ASSERT(n_logits == ctx.vocab.n_vocab); // extract the logits for the last token // we will be mutating, and therefore we don't want to use the ctx.logits buffer directly auto & probs = decoder.probs; auto & logits = decoder.logits; auto & logprobs = decoder.logprobs; { logits.resize(n_logits); memcpy(logits.data(), state.logits.data() + decoder.i_batch*n_logits, n_logits*sizeof(float)); if (temperature > 0.0f) { for (int i = 0; i < n_logits; i++) { logits[i] /= temperature; } } // will be populated a bit later probs.resize(n_logits); logprobs.resize(n_logits); } // apply logit filters here // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L480-L493 { // suppress blank // https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L388-L390 if (params.suppress_blank) { if (is_initial) { logits[vocab.token_eot] = -INFINITY; logits[vocab.token_to_id.at(" ")] = -INFINITY; } } // suppress <|notimestamps|> token // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L410-L412 logits[vocab.token_not] = -INFINITY; if (params.no_timestamps) { for (int i = vocab.token_beg; i < n_logits; ++i) { logits[i] = -INFINITY; } } // suppress sot and nosp tokens logits[vocab.token_sot] = -INFINITY; logits[vocab.token_nosp] = -INFINITY; // TODO: ignore this token for now // [TDRZ] when tinydiarize is disabled, suppress solm token if (params.tdrz_enable == false) { logits[vocab.token_solm] = -INFINITY; } // suppress task tokens logits[vocab.token_translate] = -INFINITY; logits[vocab.token_transcribe] = -INFINITY; logits[vocab.token_prev] = -INFINITY; // suppress lang tokens for (size_t i = 0; i < g_lang.size(); ++i) { logits[whisper_token_lang(&ctx, i)] = -INFINITY; } // suppress prev token logits[vocab.token_prev] = -INFINITY; if (params.logits_filter_callback) { params.logits_filter_callback(&ctx, &state, tokens_cur.data(), tokens_cur.size(), logits.data(), params.logits_filter_callback_user_data); } // suppress any tokens matching a regular expression // ref: https://github.com/openai/whisper/discussions/1041 if (params.suppress_regex != nullptr) { std::regex re(params.suppress_regex); for (std::pair token_id : vocab.token_to_id) { if (std::regex_match(token_id.first, re)) { logits[token_id.second] = -INFINITY; } } } // suppress non-speech tokens // ref: https://github.com/openai/whisper/blob/7858aa9c08d98f75575035ecd6481f462d66ca27/whisper/tokenizer.py#L224-L253 if (params.suppress_non_speech_tokens) { for (const std::string & token : non_speech_tokens) { const std::string suppress_tokens[] = {token, " " + token}; for (const std::string & suppress_token : suppress_tokens) { if (vocab.token_to_id.find(suppress_token) != vocab.token_to_id.end()) { logits[vocab.token_to_id.at(suppress_token)] = -INFINITY; } } } // allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word if (vocab.token_to_id.find(" -") != vocab.token_to_id.end()) { logits[vocab.token_to_id.at(" -")] = -INFINITY; } if (vocab.token_to_id.find(" '") != vocab.token_to_id.end()) { logits[vocab.token_to_id.at(" '")] = -INFINITY; } } // timestamps have to appear in pairs, except directly before EOT; mask logits accordingly // https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L414-L424 { const bool last_was_timestamp = tokens_cur.size() > 0 && tokens_cur.back().id >= vocab.token_beg; const bool penultimate_was_timestamp = tokens_cur.size() < 2 || tokens_cur[tokens_cur.size() - 2].id >= vocab.token_beg; //WHISPER_LOG_INFO("last_was_timestamp=%d penultimate_was_timestamp=%d\n", last_was_timestamp, penultimate_was_timestamp); if (last_was_timestamp) { if (penultimate_was_timestamp) { for (int i = vocab.token_beg; i < n_logits; ++i) { logits[i] = -INFINITY; } } else { for (int i = 0; i < vocab.token_eot; ++i) { logits[i] = -INFINITY; } } } } // the initial timestamp cannot be larger than max_initial_ts // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L426-L429 if (is_initial && params.max_initial_ts > 0.0f) { const float precision = float(WHISPER_CHUNK_SIZE)/ctx.model.hparams.n_audio_ctx; const int tid0 = std::round(params.max_initial_ts/precision); for (int i = vocab.token_beg + tid0 + 1; i < n_logits; ++i) { logits[i] = -INFINITY; } } // condition timestamp tokens to be increasing // ref: https://github.com/openai/whisper/pull/831#issuecomment-1385910556 if (decoder.has_ts) { const int tid0 = decoder.seek_delta/2; for (int i = vocab.token_beg; i < vocab.token_beg + tid0; ++i) { logits[i] = -INFINITY; } } // populate the logprobs array (log_softmax) { const float logit_max = *std::max_element(logits.begin(), logits.end()); float logsumexp = 0.0f; for (int i = 0; i < n_logits; ++i) { if (logits[i] > -INFINITY) { logsumexp += expf(logits[i] - logit_max); } } logsumexp = logf(logsumexp) + logit_max; for (int i = 0; i < n_logits; ++i) { if (logits[i] > -INFINITY) { logprobs[i] = logits[i] - logsumexp; } else { logprobs[i] = -INFINITY; } } } // if sum of probability over timestamps is above any other token, sample timestamp // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L431-L437 { // logsumexp over timestamps float timestamp_logprob = -INFINITY; { float logsumexp = 0.0f; const float logprob_max = *std::max_element(logprobs.begin() + vocab.token_beg, logprobs.end()); for (int i = vocab.token_beg; i < n_logits; ++i) { if (logprobs[i] > -INFINITY) { logsumexp += expf(logprobs[i] - logprob_max); } } if (logsumexp > 0.0f) { timestamp_logprob = logf(logsumexp) + logprob_max; } } const float max_text_token_logprob = *std::max_element(logprobs.begin(), logprobs.begin() + vocab.token_beg); //WHISPER_LOG_INFO("timestamp_logprob=%f max_text_token_logprob=%f\n", timestamp_logprob, max_text_token_logprob); if (timestamp_logprob > max_text_token_logprob) { for (int i = 0; i < vocab.token_beg; ++i) { logits[i] = -INFINITY; logprobs[i] = -INFINITY; } } else { if (params.n_grammar_rules > 0) { whisper_suppress_invalid_grammar(ctx, params, logits, decoder.grammar); // populate the logprobs array (log_softmax) { const float logit_max = *std::max_element(logits.begin(), logits.end()); float logsumexp = 0.0f; for (int i = 0; i < n_logits; ++i) { if (logits[i] > -INFINITY) { logsumexp += expf(logits[i] - logit_max); } } logsumexp = logf(logsumexp) + logit_max; for (int i = 0; i < n_logits; ++i) { if (logits[i] > -INFINITY) { logprobs[i] = logits[i] - logsumexp; } else { logprobs[i] = -INFINITY; } } } } } } } // compute probs { for (int i = 0; i < n_logits; ++i) { if (logits[i] == -INFINITY) { probs[i] = 0.0f; } else { probs[i] = expf(logprobs[i]); } } } #if 0 // print first 100 logits - token string : logit //for (int i = 0; i < 10; i++) { // const auto token = vocab.id_to_token.at(i); // const auto prob = probs[i]; // const auto logit = logits[i]; // const auto logprob = logprobs[i]; // printf("%16s : prob=%9.5f logit=%9.5f logprob=%9.5f\n", token.c_str(), prob, logit, logprob); //} // print sorted { std::vector> pairs; for (int i = 0; i < n_logits; ++i) { pairs.push_back(std::make_pair(probs[i], i)); } std::sort(pairs.begin(), pairs.end(), [](const std::pair& a, const std::pair& b) { return a.first > b.first; }); for (int i = 0; i < 10; i++) { const auto token = vocab.id_to_token.at(pairs[i].second); const auto prob = pairs[i].first; const auto logit = logits[pairs[i].second]; const auto logprob = logprobs[pairs[i].second]; printf("%16s : id=%6d prob=%9.5f logit=%9.5f logprob=%9.5f '%s'\n", token.c_str(), pairs[i].second, prob, logit, logprob, token.c_str()); } printf("----------------\n"); } // "And", "and", " And", " and" //printf("logits[\"and\"] = %f\n", logits[vocab.token_to_id.at("and")]); //printf("logits[\"And\"] = %f\n", logits[vocab.token_to_id.at("And")]); //printf("logits[\" and\"] = %f\n", logits[vocab.token_to_id.at(" and")]); //printf("logits[\" And\"] = %f\n", logits[vocab.token_to_id.at(" And")]); //printf("logits[\" so\"] = %f\n", logits[vocab.token_to_id.at(" so")]); //printf("logprobs[\"and\"] = %f\n", logprobs[vocab.token_to_id.at("and")]); //printf("logprobs[\"And\"] = %f\n", logprobs[vocab.token_to_id.at("And")]); //printf("logprobs[\" and\"] = %f\n", logprobs[vocab.token_to_id.at(" and")]); //printf("logprobs[\" And\"] = %f\n", logprobs[vocab.token_to_id.at(" And")]); //printf("logprobs[\" so\"] = %f\n", logprobs[vocab.token_to_id.at(" so")]); //printf("probs[\"and\"] = %f\n", probs[vocab.token_to_id.at("and")]); //printf("probs[\"And\"] = %f\n", probs[vocab.token_to_id.at("And")]); //printf("probs[\" and\"] = %f\n", probs[vocab.token_to_id.at(" and")]); //printf("probs[\" And\"] = %f\n", probs[vocab.token_to_id.at(" And")]); //printf("probs[\" so\"] = %f\n", probs[vocab.token_to_id.at(" so")]); #endif } static bool whisper_sequence_tokens_equal(const whisper_sequence & a, const whisper_sequence & b) { if (a.tokens.size() != b.tokens.size()) { return false; } // sequences are more likely to diverge at the end for (int i = a.tokens.size() - 1; i >= 0; i--) { if (a.tokens[i].id != b.tokens[i].id) { return false; } } return true; } static whisper_token_data whisper_sample_token( whisper_context & ctx, const whisper_decoder & decoder, bool best) { whisper_token_data result = { 0, 0, 0.0f, 0.0f, 0.0f, 0.0f, -1, -1, -1, 0.0f, }; const auto & vocab = ctx.vocab; const auto & probs = decoder.probs; const auto & logprobs = decoder.logprobs; const int n_logits = vocab.n_vocab; { double sum_ts = 0.0; double max_ts = 0.0; for (int i = vocab.token_beg; i < n_logits; i++) { if (probs[i] == -INFINITY) { continue; } sum_ts += probs[i]; if (max_ts < probs[i]) { max_ts = probs[i]; result.tid = i; } } result.pt = max_ts/(sum_ts + 1e-10); result.ptsum = sum_ts; } if (best) { for (int i = 0; i < n_logits; ++i) { if (result.p < probs[i]) { result.id = i; result.p = probs[i]; result.plog = logprobs[i]; } } } else { std::discrete_distribution<> dist(probs.begin(), probs.end()); result.id = dist(decoder.rng); result.p = probs[result.id]; result.plog = logprobs[result.id]; } if (result.id >= vocab.token_beg) { result.tid = result.id; result.pt = result.p; } return result; } static std::vector whisper_sample_token_topk( whisper_context & ctx, whisper_decoder & decoder, int k) { const auto & vocab = ctx.vocab; const auto & probs = decoder.probs; const auto & logits = decoder.logits; const auto & logprobs = decoder.logprobs; const int n_logits = vocab.n_vocab; auto & logits_id = decoder.logits_id; logits_id.resize(n_logits); for (int i = 0; i < n_logits; ++i) { logits_id[i].first = logits[i]; logits_id[i].second = i; } { using pair_type = std::remove_reference::type::value_type; std::partial_sort( logits_id.begin(), logits_id.begin() + k, logits_id.end(), [](const pair_type & a, const pair_type & b) { return a.first > b.first; }); } std::vector result; result.reserve(k); whisper_token tid = vocab.token_beg; float pt = 0.0; float ptsum = 0.0; { double sum_ts = 0.0; double max_ts = 0.0; for (int i = vocab.token_beg; i < n_logits; i++) { if (probs[i] == -INFINITY) { continue; } sum_ts += probs[i]; if (max_ts < probs[i]) { max_ts = probs[i]; tid = i; } } pt = max_ts/(sum_ts + 1e-10); ptsum = sum_ts; } std::discrete_distribution<> dist(probs.begin(), probs.end()); for (int i = 0; i < k; ++i) { const auto id = dist(decoder.rng); //printf("XXX %d %d %f %f %f %f\n", id, tid, probs[id], logprobs[id], pt, ptsum); result.push_back({ id, tid, probs[id], logprobs[id], pt, ptsum, -1, -1, -1, 0.0f, }); if (result[i].id >= vocab.token_beg) { result[i].tid = result[i].id; result[i].pt = result[i].p; } } return result; } // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L178-L192 static void whisper_sequence_score( const struct whisper_full_params & params, whisper_sequence & sequence) { if (sequence.result_len == 0) { return; } double result = 0.0f; for (int i = 0; i < sequence.result_len; ++i) { result += sequence.tokens[i].plog; } sequence.sum_logprobs = result; sequence.avg_logprobs = result/sequence.result_len; double penalty = sequence.result_len; if (params.length_penalty > 0.0f) { penalty = pow((5.0 + penalty)/6.0, params.length_penalty); } sequence.score = result/penalty; // compute the entropy of the sequence of the last 32 tokens { const int n = 32; int cnt = 0; double entropy = 0.0f; std::map token_counts; for (int i = std::max(0, sequence.result_len - n); i < sequence.result_len; ++i) { token_counts[sequence.tokens[i].id]++; cnt++; } for (const auto & kv : token_counts) { const auto p = kv.second/(double)cnt; entropy -= p*log(p); //WHISPER_LOG_DEBUG("entropy: %d %f %f, count %d\n", kv.first, p, log(p), kv.second); } sequence.entropy = entropy; } } int whisper_full_with_state( struct whisper_context * ctx, struct whisper_state * state, struct whisper_full_params params, const float * samples, int n_samples) { // clear old results auto & result_all = state->result_all; result_all.clear(); if (n_samples > 0) { // compute log mel spectrogram if (whisper_pcm_to_mel_with_state(ctx, state, samples, n_samples, params.n_threads) != 0) { WHISPER_LOG_ERROR("%s: failed to compute log mel spectrogram\n", __func__); return -2; } } // auto-detect language if not specified if (params.language == nullptr || strlen(params.language) == 0 || strcmp(params.language, "auto") == 0 || params.detect_language) { std::vector probs(whisper_lang_max_id() + 1, 0.0f); const auto lang_id = whisper_lang_auto_detect_with_state(ctx, state, 0, params.n_threads, probs.data()); if (lang_id < 0) { WHISPER_LOG_ERROR("%s: failed to auto-detect language\n", __func__); return -3; } state->lang_id = lang_id; params.language = whisper_lang_str(lang_id); WHISPER_LOG_INFO("%s: auto-detected language: %s (p = %f)\n", __func__, params.language, probs[whisper_lang_id(params.language)]); if (params.detect_language) { return 0; } } if (params.token_timestamps) { state->t_beg = 0; state->t_last = 0; state->tid_last = 0; if (n_samples > 0) { state->energy = get_signal_energy(samples, n_samples, 32); } } const int seek_start = params.offset_ms/10; const int seek_end = params.duration_ms == 0 ? whisper_n_len_from_state(state) : seek_start + params.duration_ms/10; // if length of spectrogram is less than 1.0s (100 frames), then return // basically don't process anything that is less than 1.0s // see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39 if (seek_end < seek_start + 100) { WHISPER_LOG_WARN("%s: input is too short - %d ms < 1000 ms. consider padding the input audio with silence\n", __func__, (seek_end - seek_start)*10); return 0; } // a set of temperatures to use // [ t0, t0 + delta, t0 + 2*delta, ..., < 1.0f + 1e-6f ] std::vector temperatures; if (params.temperature_inc > 0.0f) { for (float t = params.temperature; t < 1.0f + 1e-6f; t += params.temperature_inc) { temperatures.push_back(t); } } else { temperatures.push_back(params.temperature); } // initialize the decoders int n_decoders = 1; switch (params.strategy) { case WHISPER_SAMPLING_GREEDY: { n_decoders = params.greedy.best_of; } break; case WHISPER_SAMPLING_BEAM_SEARCH: { n_decoders = std::max(params.greedy.best_of, params.beam_search.beam_size); } break; }; n_decoders = std::max(1, n_decoders); if (n_decoders > WHISPER_MAX_DECODERS) { WHISPER_LOG_ERROR("%s: too many decoders requested (%d), max = %d\n", __func__, n_decoders, WHISPER_MAX_DECODERS); return -4; } // TAGS: WHISPER_DECODER_INIT for (int j = 1; j < n_decoders; j++) { auto & decoder = state->decoders[j]; decoder.sequence.tokens.reserve(state->decoders[0].sequence.tokens.capacity()); decoder.probs.resize (ctx->vocab.n_vocab); decoder.logits.resize (ctx->vocab.n_vocab); decoder.logprobs.resize(ctx->vocab.n_vocab); decoder.logits_id.reserve(ctx->model.hparams.n_vocab); decoder.rng = std::mt19937(0); } // the accumulated text context so far auto & prompt_past = state->prompt_past; if (params.no_context) { prompt_past.clear(); } // prepare prompt { std::vector prompt_tokens; // initial prompt if (!params.prompt_tokens && params.initial_prompt) { prompt_tokens.resize(1024); int n_needed = whisper_tokenize(ctx, params.initial_prompt, prompt_tokens.data(), prompt_tokens.size()); if (n_needed < 0) { prompt_tokens.resize(-n_needed); n_needed = whisper_tokenize(ctx, params.initial_prompt, prompt_tokens.data(), prompt_tokens.size()); } prompt_tokens.resize(n_needed); params.prompt_tokens = prompt_tokens.data(); params.prompt_n_tokens = prompt_tokens.size(); } // prepend the prompt tokens to the prompt_past if (params.prompt_tokens && params.prompt_n_tokens > 0) { // parse tokens from the pointer for (int i = 0; i < params.prompt_n_tokens; i++) { prompt_past.push_back(params.prompt_tokens[i]); } std::rotate(prompt_past.begin(), prompt_past.end() - params.prompt_n_tokens, prompt_past.end()); } } // overwrite audio_ctx, max allowed is hparams.n_audio_ctx if (params.audio_ctx > whisper_n_audio_ctx(ctx)) { WHISPER_LOG_ERROR("%s: audio_ctx is larger than the maximum allowed (%d > %d)\n", __func__, params.audio_ctx, whisper_n_audio_ctx(ctx)); return -5; } state->exp_n_audio_ctx = params.audio_ctx; // these tokens determine the task that will be performed std::vector prompt_init = { whisper_token_sot(ctx), }; if (whisper_is_multilingual(ctx)) { const int lang_id = whisper_lang_id(params.language); state->lang_id = lang_id; prompt_init.push_back(whisper_token_lang(ctx, lang_id)); if (params.translate) { prompt_init.push_back(whisper_token_translate(ctx)); } else { prompt_init.push_back(whisper_token_transcribe(ctx)); } } // first release distilled models require the "no_timestamps" token { const bool is_distil = ctx->model.hparams.n_text_layer == 2 && ctx->model.hparams.n_vocab != 51866; if (is_distil && !params.no_timestamps) { WHISPER_LOG_WARN("%s: using first release distilled models - forcing no_timestamps\n", __func__); params.no_timestamps = true; } } if (params.no_timestamps) { prompt_init.push_back(whisper_token_not(ctx)); } int seek = seek_start; std::vector prompt; prompt.reserve(whisper_n_text_ctx(ctx)); struct beam_candidate { int decoder_idx; int seek_delta; bool has_ts; whisper_sequence sequence; whisper_grammar grammar; }; std::vector> bc_per_dec(n_decoders); std::vector beam_candidates; // main loop while (true) { if (params.progress_callback) { const int progress_cur = (100*(seek - seek_start))/(seek_end - seek_start); params.progress_callback( ctx, state, progress_cur, params.progress_callback_user_data); } // if only 1 second left, then stop if (seek + 100 >= seek_end) { break; } if (params.encoder_begin_callback) { if (params.encoder_begin_callback(ctx, state, params.encoder_begin_callback_user_data) == false) { WHISPER_LOG_ERROR("%s: encoder_begin_callback returned false - aborting\n", __func__); break; } } // encode audio features starting at offset seek if (!whisper_encode_internal(*ctx, *state, seek, params.n_threads, params.abort_callback, params.abort_callback_user_data)) { WHISPER_LOG_ERROR("%s: failed to encode\n", __func__); return -6; } // if there is a very short audio segment left to process, we remove any past prompt since it tends // to confuse the decoder and often make it repeat or hallucinate stuff if (seek > seek_start && seek + 500 >= seek_end) { prompt_past.clear(); } int best_decoder_id = 0; for (int it = 0; it < (int) temperatures.size(); ++it) { const float t_cur = temperatures[it]; int n_decoders_cur = 1; switch (params.strategy) { case whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY: { if (t_cur > 0.0f) { n_decoders_cur = params.greedy.best_of; } } break; case whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH: { if (t_cur > 0.0f) { n_decoders_cur = params.greedy.best_of; } else { n_decoders_cur = params.beam_search.beam_size; } } break; }; n_decoders_cur = std::max(1, n_decoders_cur); WHISPER_LOG_DEBUG("\n%s: strategy = %d, decoding with %d decoders, temperature = %.2f\n", __func__, params.strategy, n_decoders_cur, t_cur); // TAGS: WHISPER_DECODER_INIT for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; decoder.sequence.tokens.clear(); decoder.sequence.result_len = 0; decoder.sequence.sum_logprobs_all = 0.0; decoder.sequence.sum_logprobs = -INFINITY; decoder.sequence.avg_logprobs = -INFINITY; decoder.sequence.entropy = 0.0; decoder.sequence.score = -INFINITY; decoder.seek_delta = 100*WHISPER_CHUNK_SIZE; decoder.failed = false; decoder.completed = false; decoder.has_ts = false; if (params.grammar_rules != nullptr) { decoder.grammar = whisper_grammar_init(params.grammar_rules, params.n_grammar_rules, params.i_start_rule); } else { decoder.grammar = {}; } } // init prompt and kv cache for the current iteration // TODO: do not recompute the prompt if it is the same as previous time { prompt.clear(); // if we have already generated some text, use it as a prompt to condition the next generation if (!prompt_past.empty() && t_cur < 0.5f && params.n_max_text_ctx > 0) { int n_take = std::min(std::min(params.n_max_text_ctx, whisper_n_text_ctx(ctx)/2), int(prompt_past.size())); prompt = { whisper_token_prev(ctx) }; prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end()); } // init new transcription with sot, language (opt) and task tokens prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end()); // print the prompt WHISPER_LOG_DEBUG("\n\n"); for (int i = 0; i < (int) prompt.size(); i++) { WHISPER_LOG_DEBUG("%s: prompt[%d] = %s\n", __func__, i, ctx->vocab.id_to_token.at(prompt[i]).c_str()); } WHISPER_LOG_DEBUG("\n\n"); whisper_kv_cache_clear(state->kv_self); whisper_batch_prep_legacy(state->batch, prompt.data(), prompt.size(), 0, 0); if (!whisper_decode_internal(*ctx, *state, state->batch, params.n_threads, false, params.abort_callback, params.abort_callback_user_data)) { WHISPER_LOG_ERROR("%s: failed to decode\n", __func__); return -7; } { const int64_t t_start_sample_us = ggml_time_us(); state->decoders[0].i_batch = prompt.size() - 1; whisper_process_logits(*ctx, *state, state->decoders[0], params, t_cur); for (int j = 1; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; whisper_kv_cache_seq_cp(state->kv_self, 0, j, -1, -1); memcpy(decoder.probs.data(), state->decoders[0].probs.data(), decoder.probs.size()*sizeof(decoder.probs[0])); memcpy(decoder.logits.data(), state->decoders[0].logits.data(), decoder.logits.size()*sizeof(decoder.logits[0])); memcpy(decoder.logprobs.data(), state->decoders[0].logprobs.data(), decoder.logprobs.size()*sizeof(decoder.logprobs[0])); } state->t_sample_us += ggml_time_us() - t_start_sample_us; } } for (int i = 0, n_max = whisper_n_text_ctx(ctx)/2 - 4; i < n_max; ++i) { const int64_t t_start_sample_us = ggml_time_us(); if (params.strategy == whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH) { for (auto & bc : bc_per_dec) { bc.clear(); } } // sampling // TODO: avoid memory allocations, optimize, avoid threads? { std::atomic j_cur(0); auto process = [&]() { while (true) { const int j = j_cur.fetch_add(1); if (j >= n_decoders_cur) { break; } auto & decoder = state->decoders[j]; if (decoder.completed || decoder.failed) { continue; } switch (params.strategy) { case whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY: { if (t_cur < 1e-6f) { decoder.sequence.tokens.push_back(whisper_sample_token(*ctx, decoder, true)); } else { decoder.sequence.tokens.push_back(whisper_sample_token(*ctx, decoder, false)); } decoder.sequence.sum_logprobs_all += decoder.sequence.tokens.back().plog; } break; case whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH: { const auto tokens_new = whisper_sample_token_topk(*ctx, decoder, params.beam_search.beam_size); for (const auto & token : tokens_new) { bc_per_dec[j].push_back({ j, decoder.seek_delta, decoder.has_ts, decoder.sequence, decoder.grammar, }); bc_per_dec[j].back().sequence.tokens.push_back(token); bc_per_dec[j].back().sequence.sum_logprobs_all += token.plog; } } break; }; } }; const int n_threads = std::min(params.n_threads, n_decoders_cur); if (n_threads == 1) { process(); } else { std::vector threads(n_threads - 1); for (int t = 0; t < n_threads - 1; ++t) { threads[t] = std::thread(process); } process(); for (int t = 0; t < n_threads - 1; ++t) { threads[t].join(); } } } beam_candidates.clear(); for (const auto & bc : bc_per_dec) { beam_candidates.insert(beam_candidates.end(), bc.begin(), bc.end()); if (!bc.empty()) { state->n_sample += 1; } } // for beam-search, choose the top candidates and update the KV caches if (params.strategy == whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH) { std::sort( beam_candidates.begin(), beam_candidates.end(), [](const beam_candidate & a, const beam_candidate & b) { if (a.sequence.sum_logprobs_all != b.sequence.sum_logprobs_all) { return a.sequence.sum_logprobs_all > b.sequence.sum_logprobs_all; } return a.decoder_idx < b.decoder_idx; }); uint32_t cur_c = 0; for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.completed || decoder.failed) { continue; } if (cur_c >= beam_candidates.size()) { cur_c = 0; } auto & cur = beam_candidates[cur_c++]; while (beam_candidates.size() > cur_c && whisper_sequence_tokens_equal(beam_candidates[cur_c].sequence, cur.sequence) && i > 0) { ++cur_c; } decoder.seek_delta = cur.seek_delta; decoder.has_ts = cur.has_ts; decoder.sequence = cur.sequence; decoder.grammar = cur.grammar; whisper_kv_cache_seq_cp(state->kv_self, cur.decoder_idx, WHISPER_MAX_DECODERS + j, -1, -1); WHISPER_LOG_DEBUG("%s: beam search: decoder %d: from decoder %d: token = %10s, plog = %8.5f, sum_logprobs = %8.5f\n", __func__, j, cur.decoder_idx, ctx->vocab.id_to_token.at(decoder.sequence.tokens.back().id).c_str(), decoder.sequence.tokens.back().plog, decoder.sequence.sum_logprobs_all); } for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.completed || decoder.failed) { continue; } whisper_kv_cache_seq_rm(state->kv_self, j, -1, -1); whisper_kv_cache_seq_cp(state->kv_self, WHISPER_MAX_DECODERS + j, j, -1, -1); whisper_kv_cache_seq_rm(state->kv_self, WHISPER_MAX_DECODERS + j, -1, -1); } } // update the decoder state // - check if the sequence is completed // - check if the sequence is failed // - update sliding window based on timestamp tokens for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.completed || decoder.failed) { continue; } auto & has_ts = decoder.has_ts; auto & failed = decoder.failed; auto & completed = decoder.completed; auto & seek_delta = decoder.seek_delta; auto & result_len = decoder.sequence.result_len; { const auto & token = decoder.sequence.tokens.back(); // timestamp token - update sliding window if (token.id > whisper_token_beg(ctx)) { const int seek_delta_new = 2*(token.id - whisper_token_beg(ctx)); // do not allow to go back in time if (has_ts && seek_delta > seek_delta_new && result_len < i) { WHISPER_LOG_DEBUG("%s: decoder %d: failed due to seek_delta (%d > %d)\n", __func__, j, seek_delta, seek_delta_new); failed = true; // TODO: maybe this is not a failure ? continue; } seek_delta = seek_delta_new; result_len = i + 1; has_ts = true; } whisper_grammar_accept_token(*ctx, decoder.grammar, token.id); #ifdef WHISPER_DEBUG { const auto tt = token.pt > 0.10 ? ctx->vocab.id_to_token.at(token.tid) : "[?]"; WHISPER_LOG_DEBUG("%s: id = %3d, decoder = %d, token = %6d, p = %6.3f, ts = %10s, %6.3f, result_len = %4d '%s'\n", __func__, i, j, token.id, token.p, tt.c_str(), token.pt, result_len, ctx->vocab.id_to_token.at(token.id).c_str()); } #endif // end of segment if (token.id == whisper_token_eot(ctx) || // end of text token (params.max_tokens > 0 && i >= params.max_tokens) || // max tokens per segment reached (has_ts && seek + seek_delta + 100 >= seek_end) // end of audio reached ) { if (result_len == 0 && !params.no_timestamps) { if (seek + seek_delta + 100 >= seek_end) { result_len = i + 1; } else { WHISPER_LOG_DEBUG("%s: decoder %d failed (result_len = 0)\n", __func__, j); failed = true; continue; } } if (params.single_segment || params.no_timestamps) { result_len = i + 1; seek_delta = 100*WHISPER_CHUNK_SIZE; } WHISPER_LOG_DEBUG("%s: decoder %d completed\n", __func__, j); completed = true; continue; } // TESTS: if no tensors are loaded, it means we are running tests if (ctx->model.n_loaded == 0) { seek_delta = 100*WHISPER_CHUNK_SIZE; completed = true; continue; } } // sometimes, the decoding can get stuck in a repetition loop // this is an attempt to mitigate such cases - we flag the decoding as failed and use a fallback strategy if (i == n_max - 1 && (result_len == 0 || seek_delta < 100*WHISPER_CHUNK_SIZE/2)) { WHISPER_LOG_DEBUG("%s: decoder %d: failed due to repetition loop\n", __func__, j); failed = true; continue; } } // check if all decoders have finished (i.e. completed or failed) { bool completed_all = true; for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.completed || decoder.failed) { continue; } completed_all = false; } if (completed_all) { break; } } state->t_sample_us += ggml_time_us() - t_start_sample_us; // obtain logits for the next token { auto & batch = state->batch; batch.n_tokens = 0; const int n_past = prompt.size() + i; for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.failed || decoder.completed) { continue; } //WHISPER_LOG_DEBUG("%s: decoder %d: token %d, seek_delta %d\n", __func__, j, decoder.sequence.tokens.back().id, decoder.seek_delta); decoder.i_batch = batch.n_tokens; batch.token [batch.n_tokens] = decoder.sequence.tokens.back().id; batch.pos [batch.n_tokens] = n_past; batch.n_seq_id[batch.n_tokens] = 1; batch.seq_id [batch.n_tokens][0] = j; batch.logits [batch.n_tokens] = 1; batch.n_tokens++; } assert(batch.n_tokens > 0); if (!whisper_decode_internal(*ctx, *state, state->batch, params.n_threads, false, params.abort_callback, params.abort_callback_user_data)) { WHISPER_LOG_ERROR("%s: failed to decode\n", __func__); return -8; } const int64_t t_start_sample_us = ggml_time_us(); // TODO: avoid memory allocations, optimize, avoid threads? { std::atomic j_cur(0); auto process = [&]() { while (true) { const int j = j_cur.fetch_add(1); if (j >= n_decoders_cur) { break; } auto & decoder = state->decoders[j]; if (decoder.failed || decoder.completed) { continue; } whisper_process_logits(*ctx, *state, decoder, params, t_cur); } }; const int n_threads = std::min(params.n_threads, n_decoders_cur); if (n_threads == 1) { process(); } else { std::vector threads(n_threads - 1); for (int t = 0; t < n_threads - 1; ++t) { threads[t] = std::thread(process); } process(); for (int t = 0; t < n_threads - 1; ++t) { threads[t].join(); } } } state->t_sample_us += ggml_time_us() - t_start_sample_us; } } // rank the resulting sequences and select the best one { double best_score = -INFINITY; for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.failed) { continue; } decoder.sequence.tokens.resize(decoder.sequence.result_len); whisper_sequence_score(params, decoder.sequence); WHISPER_LOG_DEBUG("%s: decoder %2d: score = %8.5f, result_len = %3d, avg_logprobs = %8.5f, entropy = %8.5f\n", __func__, j, decoder.sequence.score, decoder.sequence.result_len, decoder.sequence.avg_logprobs, decoder.sequence.entropy); if (decoder.sequence.result_len > 32 && decoder.sequence.entropy < params.entropy_thold) { WHISPER_LOG_DEBUG("%s: decoder %2d: failed due to entropy %8.5f < %8.5f\n", __func__, j, decoder.sequence.entropy, params.entropy_thold); decoder.failed = true; state->n_fail_h++; continue; } if (best_score < decoder.sequence.score) { best_score = decoder.sequence.score; best_decoder_id = j; } } WHISPER_LOG_DEBUG("%s: best decoder = %d\n", __func__, best_decoder_id); } bool success = true; // was the decoding successful for the current temperature? // do fallback only if: // - we are not at the last temperature if (it != (int) temperatures.size() - 1) { const auto & decoder = state->decoders[best_decoder_id]; if (decoder.failed || decoder.sequence.avg_logprobs < params.logprob_thold) { WHISPER_LOG_DEBUG("%s: failed due to avg_logprobs %8.5f < %8.5f\n", __func__, decoder.sequence.avg_logprobs, params.logprob_thold); success = false; state->n_fail_p++; } } if (success) { //for (auto & token : ctx->decoders[best_decoder_id].sequence.tokens) { // WHISPER_LOG_DEBUG("%s: token = %d, p = %6.3f, pt = %6.3f, ts = %s, str = %s\n", __func__, token.id, token.p, token.pt, ctx->vocab.id_to_token.at(token.tid).c_str(), ctx->vocab.id_to_token.at(token.id).c_str()); //} break; } WHISPER_LOG_DEBUG("\n%s: failed to decode with temperature = %.2f\n", __func__, t_cur); } // output results through a user-provided callback { const auto & best_decoder = state->decoders[best_decoder_id]; const auto seek_delta = best_decoder.seek_delta; const auto result_len = best_decoder.sequence.result_len; const auto & tokens_cur = best_decoder.sequence.tokens; // [EXPERIMENTAL] Token-level timestamps with DTW const auto n_segments_before = state->result_all.size(); //WHISPER_LOG_DEBUG("prompt_init.size() = %d, prompt.size() = %d, result_len = %d, seek_delta = %d\n", prompt_init.size(), prompt.size(), result_len, seek_delta); // update prompt_past prompt_past.clear(); if (prompt.front() == whisper_token_prev(ctx)) { prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end() - prompt_init.size()); } for (int i = 0; i < result_len; ++i) { prompt_past.push_back(tokens_cur[i].id); } if (!tokens_cur.empty() && ctx->model.n_loaded > 0) { int i0 = 0; auto t0 = seek + 2*(tokens_cur.front().tid - whisper_token_beg(ctx)); std::string text; bool speaker_turn_next = false; for (int i = 0; i < (int) tokens_cur.size(); i++) { //printf("%s: %18s %6.3f %18s %6.3f\n", __func__, // ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].p, // ctx->vocab.id_to_token[tokens_cur[i].tid].c_str(), tokens_cur[i].pt); if (params.print_special || tokens_cur[i].id < whisper_token_eot(ctx)) { text += whisper_token_to_str(ctx, tokens_cur[i].id); } // [TDRZ] record if speaker turn was predicted after current segment if (params.tdrz_enable && tokens_cur[i].id == whisper_token_solm(ctx)) { speaker_turn_next = true; } if (tokens_cur[i].id > whisper_token_beg(ctx) && !params.single_segment) { const auto t1 = seek + 2*(tokens_cur[i].tid - whisper_token_beg(ctx)); if (!text.empty()) { const auto tt0 = t0; const auto tt1 = t1; if (params.print_realtime) { if (params.print_timestamps) { printf("[%s --> %s] %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str()); } else { printf("%s", text.c_str()); fflush(stdout); } } //printf("tt0 = %d, tt1 = %d, text = %s, token = %s, token_id = %d, tid = %d\n", tt0, tt1, text.c_str(), ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].id, tokens_cur[i].tid); result_all.push_back({ tt0, tt1, text, {}, speaker_turn_next }); for (int j = i0; j <= i; j++) { result_all.back().tokens.push_back(tokens_cur[j]); } int n_new = 1; if (params.token_timestamps) { whisper_exp_compute_token_level_timestamps( *ctx, *state, result_all.size() - 1, params.thold_pt, params.thold_ptsum); if (params.max_len > 0) { n_new = whisper_wrap_segment(*ctx, *state, params.max_len, params.split_on_word); } } if (params.new_segment_callback) { params.new_segment_callback(ctx, state, n_new, params.new_segment_callback_user_data); } } text = ""; while (i < (int) tokens_cur.size() && tokens_cur[i].id > whisper_token_beg(ctx)) { i++; } i--; t0 = t1; i0 = i + 1; speaker_turn_next = false; } } if (!text.empty()) { const auto t1 = seek + seek_delta; const auto tt0 = t0; const auto tt1 = t1; if (params.print_realtime) { if (params.print_timestamps) { printf("[%s --> %s] %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str()); } else { printf("%s", text.c_str()); fflush(stdout); } } result_all.push_back({ tt0, tt1, text, {} , speaker_turn_next }); for (int j = i0; j < (int) tokens_cur.size(); j++) { result_all.back().tokens.push_back(tokens_cur[j]); } int n_new = 1; if (params.token_timestamps) { whisper_exp_compute_token_level_timestamps( *ctx, *state, result_all.size() - 1, params.thold_pt, params.thold_ptsum); if (params.max_len > 0) { n_new = whisper_wrap_segment(*ctx, *state, params.max_len, params.split_on_word); } } if (params.new_segment_callback) { params.new_segment_callback(ctx, state, n_new, params.new_segment_callback_user_data); } } } // FIXME: will timestamp offsets be correct? // [EXPERIMENTAL] Token-level timestamps with DTW { const auto n_segments = state->result_all.size() - n_segments_before; if (ctx->params.dtw_token_timestamps && n_segments) { const int n_frames = std::min(std::min(WHISPER_CHUNK_SIZE * 100, seek_delta), seek_end - seek); whisper_exp_compute_token_level_timestamps_dtw( ctx, state, params, result_all.size() - n_segments, n_segments, seek, n_frames, 7, params.n_threads); } } // update audio window seek += seek_delta; WHISPER_LOG_DEBUG("seek = %d, seek_delta = %d\n", seek, seek_delta); } } return 0; } int whisper_full( struct whisper_context * ctx, struct whisper_full_params params, const float * samples, int n_samples) { return whisper_full_with_state(ctx, ctx->state, params, samples, n_samples); } int whisper_full_parallel( struct whisper_context * ctx, struct whisper_full_params params, const float * samples, int n_samples, int n_processors) { if (n_processors == 1) { return whisper_full(ctx, params, samples, n_samples); } int ret = 0; // prepare separate states for each thread std::vector states; const int offset_samples = (WHISPER_SAMPLE_RATE*params.offset_ms)/1000; const int n_samples_per_processor = (n_samples - offset_samples)/n_processors; // the calling thread will process the first chunk // while the other threads will process the remaining chunks std::vector workers(n_processors - 1); for (int i = 0; i < n_processors - 1; ++i) { // create a new state for each thread states.push_back(whisper_init_state(ctx)); const int start_samples = offset_samples + (i + 1)*n_samples_per_processor; const int n_samples_cur = (i == n_processors - 2) ? n_samples - start_samples : n_samples_per_processor; auto params_cur = params; params_cur.offset_ms = 0; params_cur.print_progress = false; params_cur.print_realtime = false; params_cur.new_segment_callback = nullptr; params_cur.new_segment_callback_user_data = nullptr; params_cur.progress_callback = nullptr; params_cur.progress_callback_user_data = nullptr; workers[i] = std::thread(whisper_full_with_state, ctx, states[i], std::move(params_cur), samples + start_samples, n_samples_cur); } { auto params_cur = params; // We need to disable the print real-time for this one as well, otherwise it will show only for the first chunk. params_cur.print_realtime = false; // Run the first transformation using default state but only for the first chunk. ret = whisper_full_with_state(ctx, ctx->state, std::move(params_cur), samples, offset_samples + n_samples_per_processor); } for (int i = 0; i < n_processors - 1; ++i) { workers[i].join(); } const int64_t offset_t = (int64_t) params.offset_ms/10.0; // combine results into result_state->result_all from all other states for (int i = 0; i < n_processors - 1; ++i) { auto& results_i = states[i]->result_all; for (auto& result : results_i) { // correct the segment timestamp taking into account the offset result.t0 += 100 * ((i + 1) * n_samples_per_processor) / WHISPER_SAMPLE_RATE + offset_t; result.t1 += 100 * ((i + 1) * n_samples_per_processor) / WHISPER_SAMPLE_RATE + offset_t; // make sure that segments are not overlapping if (!ctx->state->result_all.empty()) { result.t0 = std::max(result.t0, ctx->state->result_all.back().t1); } ctx->state->result_all.push_back(std::move(result)); // call the new_segment_callback for each segment if (params.new_segment_callback) { params.new_segment_callback(ctx, ctx->state, 1, params.new_segment_callback_user_data); } } ctx->state->t_mel_us += states[i]->t_mel_us; ctx->state->t_sample_us += states[i]->t_sample_us; ctx->state->t_encode_us += states[i]->t_encode_us; ctx->state->t_decode_us += states[i]->t_decode_us; ctx->state->t_batchd_us += states[i]->t_batchd_us; ctx->state->t_prompt_us += states[i]->t_prompt_us; ctx->state->n_sample += states[i]->n_sample; ctx->state->n_encode += states[i]->n_encode; ctx->state->n_decode += states[i]->n_decode; ctx->state->n_batchd += states[i]->n_batchd; ctx->state->n_prompt += states[i]->n_prompt; whisper_free_state(states[i]); } // average the timings ctx->state->t_mel_us /= n_processors; ctx->state->t_sample_us /= n_processors; ctx->state->t_encode_us /= n_processors; ctx->state->t_decode_us /= n_processors; // print information about the audio boundaries WHISPER_LOG_WARN("\n"); WHISPER_LOG_WARN("%s: the audio has been split into %d chunks at the following times:\n", __func__, n_processors); for (int i = 0; i < n_processors - 1; ++i) { WHISPER_LOG_WARN("%s: split %d - %s\n", __func__, (i + 1), to_timestamp(100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t).c_str()); } WHISPER_LOG_WARN("%s: the transcription quality may be degraded near these boundaries\n", __func__); return ret; } int whisper_full_n_segments_from_state(struct whisper_state * state) { return state->result_all.size(); } int whisper_full_n_segments(struct whisper_context * ctx) { return ctx->state->result_all.size(); } int whisper_full_lang_id_from_state(struct whisper_state * state) { return state->lang_id; } int whisper_full_lang_id(struct whisper_context * ctx) { return ctx->state->lang_id; } int64_t whisper_full_get_segment_t0_from_state(struct whisper_state * state, int i_segment) { return state->result_all[i_segment].t0; } int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) { return ctx->state->result_all[i_segment].t0; } int64_t whisper_full_get_segment_t1_from_state(struct whisper_state * state, int i_segment) { return state->result_all[i_segment].t1; } int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment) { return ctx->state->result_all[i_segment].t1; } bool whisper_full_get_segment_speaker_turn_next_from_state(struct whisper_state * state, int i_segment) { return state->result_all[i_segment].speaker_turn_next; } bool whisper_full_get_segment_speaker_turn_next(struct whisper_context * ctx, int i_segment) { return ctx->state->result_all[i_segment].speaker_turn_next; } const char * whisper_full_get_segment_text_from_state(struct whisper_state * state, int i_segment) { return state->result_all[i_segment].text.c_str(); } const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) { return ctx->state->result_all[i_segment].text.c_str(); } int whisper_full_n_tokens_from_state(struct whisper_state * state, int i_segment) { return state->result_all[i_segment].tokens.size(); } int whisper_full_n_tokens(struct whisper_context * ctx, int i_segment) { return ctx->state->result_all[i_segment].tokens.size(); } const char * whisper_full_get_token_text_from_state(struct whisper_context * ctx, struct whisper_state * state, int i_segment, int i_token) { return ctx->vocab.id_to_token[state->result_all[i_segment].tokens[i_token].id].c_str(); } const char* whisper_full_get_token_text(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->vocab.id_to_token[ctx->state->result_all[i_segment].tokens[i_token].id].c_str(); } whisper_token whisper_full_get_token_id_from_state(struct whisper_state * state, int i_segment, int i_token) { return state->result_all[i_segment].tokens[i_token].id; } whisper_token whisper_full_get_token_id(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->state->result_all[i_segment].tokens[i_token].id; } struct whisper_token_data whisper_full_get_token_data_from_state(struct whisper_state * state, int i_segment, int i_token) { return state->result_all[i_segment].tokens[i_token]; } struct whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->state->result_all[i_segment].tokens[i_token]; } float whisper_full_get_token_p_from_state(struct whisper_state * state, int i_segment, int i_token) { return state->result_all[i_segment].tokens[i_token].p; } float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->state->result_all[i_segment].tokens[i_token].p; } // ================================================================================================= // // Temporary interface needed for exposing ggml interface // Will be removed in the future when ggml becomes a separate library // WHISPER_API int whisper_bench_memcpy(int n_threads) { fputs(whisper_bench_memcpy_str(n_threads), stderr); return 0; } WHISPER_API const char * whisper_bench_memcpy_str(int n_threads) { static std::string s; s = ""; char strbuf[256]; ggml_time_init(); size_t n = 20; size_t arr = n_threads > 0 ? 1024llu : n_threads; // trick to avoid compiler optimizations // 1GB array const size_t size = arr*1e6; double sum = 0.0; // heat-up { char * src = (char *) malloc(size); char * dst = (char *) malloc(size); for (size_t i = 0; i < size; i++) src[i] = i; memcpy(dst, src, size); // heat-up double tsum = 0.0; for (size_t i = 0; i < n; i++) { const int64_t t0 = ggml_time_us(); memcpy(dst, src, size); const int64_t t1 = ggml_time_us(); tsum += (t1 - t0)*1e-6; src[rand() % size] = rand() % 256; } snprintf(strbuf, sizeof(strbuf), "memcpy: %7.2f GB/s (heat-up)\n", (double) (n*size)/(tsum*1e9)); s += strbuf; // needed to prevent the compiler from optimizing the memcpy away { for (size_t i = 0; i < size; i++) sum += dst[i]; } free(src); free(dst); } // single-thread { char * src = (char *) malloc(size); char * dst = (char *) malloc(size); for (size_t i = 0; i < size; i++) src[i] = i; memcpy(dst, src, size); // heat-up double tsum = 0.0; for (size_t i = 0; i < n; i++) { const int64_t t0 = ggml_time_us(); memcpy(dst, src, size); const int64_t t1 = ggml_time_us(); tsum += (t1 - t0)*1e-6; src[rand() % size] = rand() % 256; } snprintf(strbuf, sizeof(strbuf), "memcpy: %7.2f GB/s ( 1 thread)\n", (double) (n*size)/(tsum*1e9)); s += strbuf; // needed to prevent the compiler from optimizing the memcpy away { for (size_t i = 0; i < size; i++) sum += dst[i]; } free(src); free(dst); } // multi-thread for (int32_t k = 1; k <= n_threads; k++) { char * src = (char *) malloc(size); char * dst = (char *) malloc(size); for (size_t i = 0; i < size; i++) src[i] = i; memcpy(dst, src, size); // heat-up double tsum = 0.0; auto helper = [&](int th) { const int64_t i0 = (th + 0)*size/k; const int64_t i1 = (th + 1)*size/k; for (size_t i = 0; i < n; i++) { memcpy(dst + i0, src + i0, i1 - i0); src[i0 + rand() % (i1 - i0)] = rand() % 256; }; }; const int64_t t0 = ggml_time_us(); std::vector threads(k - 1); for (int32_t th = 0; th < k - 1; ++th) { threads[th] = std::thread(helper, th); } helper(k - 1); for (int32_t th = 0; th < k - 1; ++th) { threads[th].join(); } const int64_t t1 = ggml_time_us(); tsum += (t1 - t0)*1e-6; snprintf(strbuf, sizeof(strbuf), "memcpy: %7.2f GB/s (%2d thread)\n", (double) (n*size)/(tsum*1e9), k); s += strbuf; // needed to prevent the compiler from optimizing the memcpy away { for (size_t i = 0; i < size; i++) sum += dst[i]; } free(src); free(dst); } snprintf(strbuf, sizeof(strbuf), "sum: %f\n", sum); s += strbuf; return s.c_str(); } WHISPER_API int whisper_bench_ggml_mul_mat(int n_threads) { fputs(whisper_bench_ggml_mul_mat_str(n_threads), stderr); return 0; } WHISPER_API const char * whisper_bench_ggml_mul_mat_str(int n_threads) { static std::string s; s = ""; char strbuf[256]; ggml_time_init(); const int n_max = 128; const std::vector sizes = { 64, 128, 256, 512, 1024, 2048, 4096, }; const size_t N_max = sizes.back(); // a: N*N*sizeof(float) // b: N*N*sizeof(float) // c: N*N*sizeof(float) // when F16 is used, there is an extra work buffer of size N*N*sizeof(float) std::vector buf(3llu*N_max*N_max*sizeof(float) + 3*ggml_tensor_overhead() + ggml_graph_overhead()); std::vector work; // put a bunch of random data in the buffer for (size_t i = 0; i < buf.size(); i++) buf[i] = i; for (int j = 0; j < (int) sizes.size(); j++) { int n_q4_0 = 0; int n_q4_1 = 0; int n_q5_0 = 0; int n_q5_1 = 0; int n_q8_0 = 0; int n_fp16 = 0; int n_fp32 = 0; // GFLOPS/s double s_q4_0 = 0.0; double s_q4_1 = 0.0; double s_q5_0 = 0.0; double s_q5_1 = 0.0; double s_q8_0 = 0.0; double s_fp16 = 0.0; double s_fp32 = 0.0; const size_t N = sizes[j]; for (int k = 0; k < 7; ++k) { const ggml_type wtype = k == 0 ? GGML_TYPE_Q4_0 : k == 1 ? GGML_TYPE_Q4_1 : k == 2 ? GGML_TYPE_Q5_0 : k == 3 ? GGML_TYPE_Q5_1 : k == 4 ? GGML_TYPE_Q8_0 : k == 5 ? GGML_TYPE_F16 : GGML_TYPE_F32; double & s = k == 0 ? s_q4_0 : k == 1 ? s_q4_1 : k == 2 ? s_q5_0 : k == 3 ? s_q5_1 : k == 4 ? s_q8_0 : k == 5 ? s_fp16 : /*k == 6*/ s_fp32; int & n = k == 0 ? n_q4_0 : k == 1 ? n_q4_1 : k == 2 ? n_q5_0 : k == 3 ? n_q5_1 : k == 4 ? n_q8_0 : k == 5 ? n_fp16 : /*k == 6*/ n_fp32; struct ggml_init_params gparams = { /*.mem_size =*/ buf.size(), /*.mem_buffer =*/ buf.data(), /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(gparams); struct ggml_tensor * a = ggml_new_tensor_2d(ctx0, wtype, N, N); struct ggml_tensor * b = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, N, N); struct ggml_tensor * c = ggml_mul_mat(ctx0, a, b); struct ggml_cgraph * gf = ggml_new_graph(ctx0); ggml_build_forward_expand(gf, c); double tsum = 0.0; // heat-up ggml_graph_compute_helper(gf, work, n_threads, nullptr, nullptr); for (int i = 0; i < n_max; ++i) { const int64_t t0 = ggml_time_us(); ggml_graph_compute_helper(gf, work, n_threads, nullptr, nullptr); const int64_t t1 = ggml_time_us(); tsum += (t1 - t0)*1e-6; n++; if (tsum > 1.0 && n >= 3) { break; } } ggml_free(ctx0); s = ((2.0*N*N*N*n)/tsum)*1e-9; } // Q4_0 | Q4_1 snprintf(strbuf, sizeof(strbuf), "%4zu x %4zu: Q4_0 %7.1f GFLOPS (%3d runs) | Q4_1 %7.1f GFLOPS (%3d runs)\n", N, N, s_q4_0, n_q4_0, s_q4_1, n_q4_1); s += strbuf; // Q5_0 | Q5_1 | Q8_0 snprintf(strbuf, sizeof(strbuf), "%4zu x %4zu: Q5_0 %7.1f GFLOPS (%3d runs) | Q5_1 %7.1f GFLOPS (%3d runs) | Q8_0 %7.1f GFLOPS (%3d runs)\n", N, N, s_q5_0, n_q5_0, s_q5_1, n_q5_1, s_q8_0, n_q8_0); s += strbuf; // F16 | F32 snprintf(strbuf, sizeof(strbuf), "%4zu x %4zu: F16 %7.1f GFLOPS (%3d runs) | F32 %7.1f GFLOPS (%3d runs)\n", N, N, s_fp16, n_fp16, s_fp32, n_fp32); s += strbuf; } return s.c_str(); } // ================================================================================================= // ================================================================================================= // // Experimental stuff below // // Not sure if these should be part of the library at all, because the quality of the results is not // guaranteed. Might get removed at some point unless a robust algorithm implementation is found // // ================================================================================================= // // token-level timestamps // static int timestamp_to_sample(int64_t t, int n_samples) { return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100))); } static int64_t sample_to_timestamp(int i_sample) { return (100ll*i_sample)/WHISPER_SAMPLE_RATE; } // a cost-function / heuristic that is high for text that takes longer to pronounce // obviously, can be improved static float voice_length(const std::string & text) { float res = 0.0f; for (char c : text) { if (c == ' ') { res += 0.01f; } else if (c == ',') { res += 2.00f; } else if (c == '.') { res += 3.00f; } else if (c == '!') { res += 3.00f; } else if (c == '?') { res += 3.00f; } else if (c >= '0' && c <= '9') { res += 3.00f; } else { res += 1.00f; } } return res; } // average the fabs of the signal static std::vector get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window) { const int hw = n_samples_per_half_window; std::vector result(n_samples); for (int i = 0; i < n_samples; i++) { float sum = 0; for (int j = -hw; j <= hw; j++) { if (i + j >= 0 && i + j < n_samples) { sum += fabs(signal[i + j]); } } result[i] = sum/(2*hw + 1); } return result; } static void whisper_exp_compute_token_level_timestamps( struct whisper_context & ctx, struct whisper_state & state, int i_segment, float thold_pt, float thold_ptsum) { auto & segment = state.result_all[i_segment]; auto & tokens = segment.tokens; const int n_samples = state.energy.size(); if (n_samples == 0) { WHISPER_LOG_ERROR("%s: no signal data available\n", __func__); return; } const int64_t t0 = segment.t0; const int64_t t1 = segment.t1; const int n = tokens.size(); if (n == 0) { return; } if (n == 1) { tokens[0].t0 = t0; tokens[0].t1 = t1; return; } auto & t_beg = state.t_beg; auto & t_last = state.t_last; auto & tid_last = state.tid_last; for (int j = 0; j < n; ++j) { auto & token = tokens[j]; if (j == 0) { if (token.id == whisper_token_beg(&ctx)) { tokens[j ].t0 = t0; tokens[j ].t1 = t0; tokens[j + 1].t0 = t0; t_beg = t0; t_last = t0; tid_last = whisper_token_beg(&ctx); } else { tokens[j ].t0 = t_last; } } const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(&ctx)); tokens[j].id = token.id; tokens[j].tid = token.tid; tokens[j].p = token.p; tokens[j].pt = token.pt; tokens[j].ptsum = token.ptsum; tokens[j].vlen = voice_length(whisper_token_to_str(&ctx, token.id)); if (token.pt > thold_pt && token.ptsum > thold_ptsum && token.tid > tid_last && tt <= t1) { if (j > 0) { tokens[j - 1].t1 = tt; } tokens[j].t0 = tt; tid_last = token.tid; } } tokens[n - 2].t1 = t1; tokens[n - 1].t0 = t1; tokens[n - 1].t1 = t1; t_last = t1; // find intervals of tokens with unknown timestamps // fill the timestamps by proportionally splitting the interval based on the token voice lengths { int p0 = 0; int p1 = 0; while (true) { while (p1 < n && tokens[p1].t1 < 0) { p1++; } if (p1 >= n) { p1--; } //printf("p0=%d p1=%d t0=%lld t1=%lld\n", p0, p1, tokens[p0].t0, tokens[p1].t1); if (p1 > p0) { double psum = 0.0; for (int j = p0; j <= p1; j++) { psum += tokens[j].vlen; } //printf("analyzing %d - %d, psum = %f\n", p0, p1, psum); const double dt = tokens[p1].t1 - tokens[p0].t0; // split the time proportionally to the voice length for (int j = p0 + 1; j <= p1; j++) { const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum; tokens[j - 1].t1 = ct; tokens[j ].t0 = ct; } } p1++; p0 = p1; if (p1 >= n) { break; } } } // fix up (just in case) for (int j = 0; j < n - 1; j++) { if (tokens[j].t1 < 0) { tokens[j + 1].t0 = tokens[j].t1; } if (j > 0) { if (tokens[j - 1].t1 > tokens[j].t0) { tokens[j].t0 = tokens[j - 1].t1; tokens[j].t1 = std::max(tokens[j].t0, tokens[j].t1); } } } // VAD // expand or contract tokens based on voice activity { const int hw = WHISPER_SAMPLE_RATE/8; for (int j = 0; j < n; j++) { if (tokens[j].id >= whisper_token_eot(&ctx)) { continue; } int s0 = timestamp_to_sample(tokens[j].t0, n_samples); int s1 = timestamp_to_sample(tokens[j].t1, n_samples); const int ss0 = std::max(s0 - hw, 0); const int ss1 = std::min(s1 + hw, n_samples); const int ns = ss1 - ss0; float sum = 0.0f; for (int k = ss0; k < ss1; k++) { sum += state.energy[k]; } const float thold = 0.5*sum/ns; { int k = s0; if (state.energy[k] > thold && j > 0) { while (k > 0 && state.energy[k] > thold) { k--; } tokens[j].t0 = sample_to_timestamp(k); if (tokens[j].t0 < tokens[j - 1].t1) { tokens[j].t0 = tokens[j - 1].t1; } else { s0 = k; } } else { while (state.energy[k] < thold && k < s1) { k++; } s0 = k; tokens[j].t0 = sample_to_timestamp(k); } } { int k = s1; if (state.energy[k] > thold) { while (k < n_samples - 1 && state.energy[k] > thold) { k++; } tokens[j].t1 = sample_to_timestamp(k); if (j < ns - 1 && tokens[j].t1 > tokens[j + 1].t0) { tokens[j].t1 = tokens[j + 1].t0; } else { s1 = k; } } else { while (state.energy[k] < thold && k > s0) { k--; } s1 = k; tokens[j].t1 = sample_to_timestamp(k); } } } } // fixed token expand (optional) //{ // const int t_expand = 0; // for (int j = 0; j < n; j++) { // if (j > 0) { // tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand)); // } // if (j < n - 1) { // tokens[j].t1 = tokens[j].t1 + t_expand; // } // } //} // debug info //for (int j = 0; j < n; ++j) { // const auto & token = tokens[j]; // const auto tt = token.pt > thold_pt && token.ptsum > 0.01 ? whisper_token_to_str(&ctx, token.tid) : "[?]"; // printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__, // tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, whisper_token_to_str(&ctx, token.id)); // if (tokens[j].id >= whisper_token_eot(&ctx)) { // continue; // } //} } // // token level timestamps - dtw version // // n_text_layer -> total text layers on model // n_head -> total heads per text layer on model static std::vector get_alignment_heads_by_layer(const whisper_context_params & cparams, int il, int n_text_layer, int n_head) { std::vector ret; if (cparams.dtw_aheads_preset == WHISPER_AHEADS_NONE) { return ret; } else if (cparams.dtw_aheads_preset == WHISPER_AHEADS_N_TOP_MOST) { if (il >= n_text_layer - cparams.dtw_n_top) { for (int32_t i = 0; i < n_head; ++i) { ret.push_back(i); } } } else { const auto aheads = cparams.dtw_aheads_preset == WHISPER_AHEADS_CUSTOM ? cparams.dtw_aheads : g_aheads.at(cparams.dtw_aheads_preset); for (size_t i = 0; i < aheads.n_heads; ++i) { if (aheads.heads[i].n_text_layer == il) { ret.push_back(aheads.heads[i].n_head); } } } return ret; } // dtw + backtrace to return found path // based on // https://github.com/openai/whisper/blob/main/whisper/timing.py#L83 static ggml_tensor * dtw_and_backtrace(ggml_context * ctx, ggml_tensor * x) { WHISPER_ASSERT(ggml_n_dims(x) == 2); int64_t N = x->ne[0]; int64_t M = x->ne[1]; struct ggml_tensor * cost = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, N + 1, M + 1); struct ggml_tensor * trace = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, N + 1, M + 1); cost = ggml_set_f32(cost, INFINITY); trace = ggml_set_f32(trace, -1); ggml_set_f32_nd(cost, 0, 0, 0, 0, 0.0); // dtw // supposedly can be optmized by computing diagonals in parallel ? // Not sure it is worth it since x will be GENERATED_TOKENS*1500 size at most. for (int64_t j = 1; j < M + 1; ++j) { for (int64_t i = 1; i < N + 1; ++i) { float c0 = ggml_get_f32_nd(cost, i - 1, j - 1, 0, 0); float c1 = ggml_get_f32_nd(cost, i - 1, j, 0, 0); float c2 = ggml_get_f32_nd(cost, i, j - 1, 0, 0); float c; int32_t t; if (c0 < c1 && c0 < c2) { c = c0; t = 0; } else if (c1 < c0 && c1 < c2) { c = c1; t = 1; } else { c = c2; t = 2; } c = ggml_get_f32_nd(x, i - 1, j - 1, 0, 0) + c; ggml_set_f32_nd(cost, i, j, 0, 0, c); ggml_set_i32_nd(trace, i, j, 0, 0, t); } } // Backtrace const int64_t BT_MAX_ROWS = N + M - 1; struct ggml_tensor * bt = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, BT_MAX_ROWS, 2); // trace[0, :] = 2; for (int64_t i = 0; i < M + 1; ++i) ggml_set_i32_nd(trace, 0, i, 0, 0, 2); //trace[:, 0] = 1; for (int64_t i = 0; i < N + 1; ++i) ggml_set_i32_nd(trace, i, 0, 0, 0, 1); int bt_row_idx = BT_MAX_ROWS - 1; int64_t i = N; int64_t j = M; while (i > 0 || j > 0) { ggml_set_i32_nd(bt, bt_row_idx, 0, 0, 0, i - 1); ggml_set_i32_nd(bt, bt_row_idx, 1, 0, 0, j - 1); --bt_row_idx; int32_t t = ggml_get_i32_nd(trace, i, j, 0, 0); if (t == 0) { --i; --j; } else if (t == 1) { --i; } else if (t == 2) { --j; } else { WHISPER_ASSERT(0); } } // FIXME: manual clip/transpose might not be the most efficient way? (e.g. use ggml funcs) // Clip + transpose // This might not be entirely necessary for our case, but leaving it for now so output matrix // is identical to dtw on openAI timing.py const int64_t result_n_cols = BT_MAX_ROWS-bt_row_idx-1; ggml_tensor * r = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, 2, result_n_cols); for (int64_t i = 0; i < 2; ++i) { for (int64_t j = 0; j < result_n_cols; ++j) { int32_t v = ggml_get_i32_nd(bt, j+bt_row_idx+1, i, 0, 0); ggml_set_i32_nd(r, i, j, 0, 0, v); } } return r; } struct median_filter_user_data { int filter_width; }; static void median_filter(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int /*nth*/, void * userdata) { if (ith != 0) { return; } int filter_width = ((median_filter_user_data *) userdata)->filter_width; WHISPER_ASSERT(filter_width < a->ne[2]); WHISPER_ASSERT(filter_width % 2); WHISPER_ASSERT(ggml_n_dims(a) == 3); WHISPER_ASSERT(a->type == GGML_TYPE_F32); std::vector filter; filter.reserve(filter_width); for (int64_t i = 0; i < a->ne[0]; ++i) { for (int64_t j = 0; j < a->ne[1]; ++j) { for (int64_t k = 0; k < a->ne[2]; ++k) { for (int64_t off = -filter_width/2; off <= filter_width/2; ++off) { // "reflect" padding int64_t idx = k + off; if (idx < 0) { idx = -idx; } else if (idx >= a->ne[2]) { idx = 2*(a->ne[2] - 1) - idx; } filter.push_back(ggml_get_f32_nd(a, i, j, idx, 0)); } std::sort(filter.begin(), filter.end()); const float v = filter[filter.size()/2]; ggml_set_f32_nd(dst, i, j, k, 0, v); filter.clear(); } } } } static void whisper_exp_compute_token_level_timestamps_dtw( struct whisper_context * ctx, struct whisper_state * state, struct whisper_full_params params, int i_segment, size_t n_segments, int seek, int n_frames, int medfilt_width, int n_threads) { const int n_audio_ctx = state->exp_n_audio_ctx > 0 ? state->exp_n_audio_ctx : ctx->model.hparams.n_audio_ctx; WHISPER_ASSERT(medfilt_width % 2); WHISPER_ASSERT(n_frames <= n_audio_ctx * 2); WHISPER_ASSERT(ctx->params.dtw_aheads_preset != WHISPER_AHEADS_NONE); // FIXME: Allocating mem everytime we call this func // Our ggml buffer should be pre-allocated somewhere during init and reused // when we call this function struct ggml_init_params gparams = { /*.mem_size =*/ ctx->params.dtw_mem_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; struct ggml_context * gctx = ggml_init(gparams); // Build token sequence that will be passed to decoder // sot + [lang] + text result + eot std::vector tokens = { whisper_token_sot(ctx), }; if (whisper_is_multilingual(ctx)) { const int lang_id = whisper_lang_id(params.language); state->lang_id = lang_id; tokens.push_back(whisper_token_lang(ctx, lang_id)); } const size_t sot_sequence_length = tokens.size(); tokens.push_back(whisper_token_not(ctx)); for (size_t i = i_segment; i < i_segment + n_segments; ++i) { auto & segment = state->result_all[i]; for (auto &t: segment.tokens) { // Only text tokens if (t.id < whisper_token_eot(ctx)) { tokens.push_back(t.id); } } } tokens.push_back(whisper_token_eot(ctx)); // Get result tokens, pass then along to decoder to get cross attention QKs // used in timestamping // Decoder already returns only alignment head QKs, already concatenated in // one tensor. whisper_kv_cache_clear(state->kv_self); whisper_batch_prep_legacy(state->batch, tokens.data(), tokens.size(), 0, 0); whisper_kv_cache_seq_rm(state->kv_self, 0, 0, -1); if (!whisper_decode_internal(*ctx, *state, state->batch, n_threads, true, nullptr, nullptr)) { WHISPER_LOG_INFO("DECODER FAILED\n"); WHISPER_ASSERT(0); } WHISPER_ASSERT(state->aheads_cross_QKs != nullptr); const auto n_audio_tokens = n_frames/2; WHISPER_ASSERT(state->aheads_cross_QKs != NULL); WHISPER_ASSERT(n_audio_tokens <= state->aheads_cross_QKs->ne[1]); const auto n_tokens = state->aheads_cross_QKs->ne[0]; const auto n_heads = state->aheads_cross_QKs->ne[2]; // Copy data from decoder buffer to a local CPU tensor, discarding unused audio // tokens (i.e. discarding rows at the end of tensor) // IN: Tensor with N_TOKENS*audio_ctx*N_ALIGNMENT_HEADS dims // OUT: Tensor with N_TOKENS*N_AUDIO_TOKENS*N_ALIGNMENT_HEADS dims WHISPER_ASSERT(state->aheads_cross_QKs->type == GGML_TYPE_F32); WHISPER_ASSERT(ggml_is_contiguous(state->aheads_cross_QKs)); ggml_tensor * w = ggml_new_tensor_3d(gctx, GGML_TYPE_F32, n_tokens, n_audio_tokens, n_heads); auto & data = state->aheads_cross_QKs_data; data.resize(n_tokens * n_audio_ctx * n_heads); ggml_backend_tensor_get(state->aheads_cross_QKs, data.data(), 0, sizeof(float) * n_tokens * n_audio_ctx * n_heads); for (int k = 0; k < n_heads; ++k) { for (int j = 0; j < n_audio_tokens; ++j) { memcpy( (char *) w->data + j * w->nb[1] + k * w->nb[2], data.data() + j * n_tokens + k * n_tokens * n_audio_ctx, n_tokens * sizeof(float) ); } } // Normalize - in original OpenAI code, this is done over dim=-2. In this case, // we already permuted N_TOKENS dimension to columns on last loop, becase ggml_norm // operates over columns. Afterwards, permute to a shape that facilitates mean // operation (after median filter) // IN: Tensor with N_TOKENS*N_AUDIO_TOKENS*N_ALIGNMENT_HEADS dims // OUT: Tensor with N_ALIGNMENT_HEADS*N_TOKENS*N_AUDIO_TOKENS dims w = ggml_norm(gctx, w, 1e-9f); w = ggml_permute(gctx, ggml_permute(gctx, w, 2, 1, 0 ,3), 0, 2, 1, 3); // Pass median filter - this is done over AUDIO_TOKENS dimension. // IN: Tensor with N_ALIGNMENT_HEADS*N_TOKENS*N_AUDIO_TOKENS dims // OUT: Same dims median_filter_user_data mf_user_data = {medfilt_width}; w = ggml_map_custom1(gctx, w, median_filter, 1, &mf_user_data); // Take mean over columns, scale by -1, reshape to 2D tensor, remove SOT sequence and EOT // IN: Tensor with N_ALIGNMENT_HEADS*N_TOKENS*N_AUDIO_TOKENS dims // OUT: Tensor with N_TOKENS*N_AUDIO_TOKENS dims w = ggml_mean(gctx, w); w = ggml_scale(gctx, w, -1.0); w = ggml_reshape_2d(gctx, w, w->ne[1], w->ne[2]); // Remove SOT sequence and EOT // Out dimension is (N_TOKENS-sot_sequence_length-1)*N_AUDIO_TOKENS w = ggml_view_2d(gctx, w, w->ne[0] - sot_sequence_length - 1, w->ne[1], w->nb[1], sot_sequence_length * w->nb[0]); // Compute struct ggml_cgraph * gf = ggml_new_graph(gctx); ggml_build_forward_expand(gf, w); ggml_graph_compute_with_ctx(gctx, gf, n_threads); ggml_tensor * alignment = dtw_and_backtrace(gctx, w); // Place timestamps on segments int32_t last_v = 0; auto seg_i = state->result_all.begin() + i_segment; auto tok_i = seg_i->tokens.begin(); for (int i = 0; i < alignment->ne[1]; ++i) { int32_t v = ggml_get_i32_nd(alignment, 0, i, 0, 0); if (v != last_v) { int32_t time_index = ggml_get_i32_nd(alignment, 1, i, 0, 0); int64_t timestamp = (time_index * 2) + seek; // Each index on DTW result = 20mS audio last_v = v; // Skip non-text tokens while (!(tok_i->id < whisper_token_eot(ctx))) { ++tok_i; if (tok_i == seg_i->tokens.end()) { ++seg_i; tok_i = seg_i->tokens.begin(); } } tok_i->t_dtw = timestamp; ++tok_i; if (tok_i == seg_i->tokens.end()) { ++seg_i; tok_i = seg_i->tokens.begin(); } } } // Print DTW timestamps /*for (size_t i = i_segment; i < i_segment + n_segments; ++i) { auto & segment = state->result_all[i]; for (auto &t: segment.tokens) { const char * tok = whisper_token_to_str(ctx, t.id); fprintf(stderr, "|%s|(%.2f) ", tok, (float)t.t_dtw/100); } fprintf(stderr, "\n"); }*/ ggml_free(gctx); } void whisper_log_set(ggml_log_callback log_callback, void * user_data) { g_state.log_callback = log_callback ? log_callback : whisper_log_callback_default; g_state.log_callback_user_data = user_data; } GGML_ATTRIBUTE_FORMAT(2, 3) static void whisper_log_internal(ggml_log_level level, const char * format, ...) { va_list args; va_start(args, format); char buffer[1024]; int len = vsnprintf(buffer, 1024, format, args); if (len < 1024) { g_state.log_callback(level, buffer, g_state.log_callback_user_data); } else { char* buffer2 = new char[len+1]; vsnprintf(buffer2, len+1, format, args); buffer2[len] = 0; g_state.log_callback(level, buffer2, g_state.log_callback_user_data); delete[] buffer2; } va_end(args); } static void whisper_log_callback_default(ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; fputs(text, stderr); fflush(stderr); }