Spaces:
Sleeping
Sleeping
File size: 9,388 Bytes
54fa6eb f8680f5 54fa6eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
from src.utils import LLMHandler, initialize_newsletter, integrate_personalized_text, build_context, build_prompt
from src.utils_api import get_recommendations
import yaml
import logging
import argparse
import os
import tempfile
# logging.basicConfig(filename='logs/app.log', encoding='utf-8', level=logging.info)
logging.basicConfig(level=logging.INFO)
def main():
# get arguments with argparse
parser = argparse.ArgumentParser(description='Newsletter Generator')
parser.add_argument('--config-file', type=str, default='./config/config.yaml', help='Path to the configuration file.')
args = parser.parse_args()
logging.info("Starting the Newsletter Generator app...")
# Load configuration from YAML file
logging.info("Loading configuration from config.yaml...")
with open(args.config_file, "r") as file:
config = yaml.safe_load(file)
# setup
#try:
# os.environ["RECOMMENDER_URL"] = config['recommender_api']['base_url']
# os.environ["RECOMMENDER_KEY"] = config['recommender_api']['key']
# os.environ["OPENAI_KEY"] = config['llm']['api_key']
#except:
# pass
llm_settings = config['llm']
newsletter_meta_info = config['newsletter']
logging.debug(f"Configuration loaded: {config}")
# Initialize the LLM handler
llm_handler = LLMHandler(**llm_settings)
logging.info(f"LLM handler initialized with the following settings: {config['llm']}")
# Define the function to generate the newsletter using the OpenAI API
def generate_newsletter(
customer_id,
model_name,
temperature,
max_tokens,
system_message,
textual_preferences,
progress=gr.Progress()
):
# get recommendations
progress(0.1, "Fetching Client History...")
logging.info("Getting recommendations...")
customer_info, recommendations, transactions = get_recommendations(
customer_id,
max_recs=newsletter_meta_info['max_recommendations'],
max_transactions=newsletter_meta_info['max_recents_items'])
logging.debug(f"Recommendations: {recommendations}")
logging.debug(f"Transactions: {transactions}")
print("cusomter info", customer_info)
# Load the html template and replace the placeholders for images with the actual content
logging.info("Initializing newsletter template...")
progress(0.5, "Initializing personalized content...")
newsletter_text = initialize_newsletter(newsletter_meta_info, transactions, recommendations)
# Build context from the user preferences, the recommendations and the transactions
context = build_context(
recommendations,
transactions,
textual_preferences,
customer_info)
logging.info(f"Context: {context}")
# Build the prompt for the LLM
progress(0.7, "Generating personalized content...")
prompt = build_prompt(context)
logging.info(f"Prompt: {prompt}")
# Generate the newsletter
sections = llm_handler.generate(
prompt,
model_name,
temperature,
max_tokens,
system_message)
logging.info(f"Sections: {sections}")
# Intergrate personalized text
logging.info("Integrating personalized text...")
newsletter_text = integrate_personalized_text(newsletter_text, customer_info, sections)
# Save HTML to a temporary file for download
with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as temp_file:
temp_file.write(newsletter_text.encode("utf-8"))
temp_file_path = temp_file.name
progress(1.0)
return newsletter_text, temp_file_path
logging.info("Creating interface...")
with gr.Blocks() as demo:
# Header Section
gr.Markdown("## AI-Powered Newsletter for Fashion Brands", elem_id="header")
# Input Section
with gr.Row():
customer_id = gr.Dropdown(
label="Customer ID",
#value="04a183a27a6877e560e1025216d0a3b40d88668c68366da17edfb18ed89c574c",
interactive=True,
choices=[
("customer 1", "04a183a27a6877e560e1025216d0a3b40d88668c68366da17edfb18ed89c574c"),
("customer 2", "1abaca5cd299000720538c70ba2ed246db6731bce924b5b4ca81770a47842656"),
("customer 3", "1741b0d1b2c29994084b7312001c1b11ab8b112b3fd05ac765f4d232afdc4eaf")
]
)
with gr.Row():
textual_preferences = gr.Textbox(
label="Newsletter Preferences",
placeholder="Enter rich newsletter preferences."
)
# Advanced Settings
with gr.Accordion("⚙️ Advanced Settings", open=False):
with gr.Row():
model_name = gr.Dropdown(
label="LLM Model",
choices=["gpt-3.5-turbo", "gpt-4o"],
value=llm_handler.model_name
)
temperature = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=1.0,
step=0.05,
value=llm_handler.default_temperature
)
with gr.Row():
max_tokens = gr.Number(
label="Max Tokens",
value=llm_handler.default_max_tokens,
precision=0
)
system_message = gr.Textbox(
label="System Message",
placeholder="Enter a custom system message (optional).",
value=llm_handler.default_system_message,
visible=False
)
# User Context (Hidden by Default)
with gr.Accordion("🧑💻 User Context", open=False, visible=False):
pass # Placeholder for future user context integration.
# Output Section
with gr.Row():
generate_button = gr.Button("Generate Personalized Newsletter", variant="primary")
download = gr.DownloadButton("Download")
newsletter_output = gr.HTML(
label="Generated Newsletter",
value="<br><br><br><br><br>",
min_height=500
)
# Event Binding
generate_button.click(
fn=generate_newsletter,
inputs=[
customer_id,
model_name,
temperature,
max_tokens,
system_message,
textual_preferences
],
outputs=[newsletter_output, download]
)
# Launch App
demo.queue().launch(
share=config['app']['share'],
server_port=config['app']['server_port']
)
# Gradio interface for the app
""" logging.info("Creating interface...")
with gr.Blocks() as demo:
gr.Markdown("### Newsletter Generator")
customer_id = gr.Textbox(label="Client ID", value="04a183a27a6877e560e1025216d0a3b40d88668c68366da17edfb18ed89c574c")
textual_preferences = gr.Textbox(label="Newsletter preferences", placeholder="The newsletter should be catchy.")
# llm_preferences = gr.Textbox(label="LLM Preferences", placeholder="Enter LLM preferences.", visible=False)
# create an openable block for the llm preferences
with gr.Accordion("LLM Preferences", open=False):
model_name = gr.Dropdown(label="Model Name", choices=["gpt-3.5-turbo", "gpt-4o"], value=llm_handler.model_name)
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.05, value=llm_handler.default_temperature)
max_tokens = gr.Number(label="Max Tokens", value=llm_handler.default_max_tokens)
system_message = gr.Textbox(label="System Message", placeholder="Enter the system message or Leave Blank.", value=llm_handler.default_system_message)
with gr.Accordion("User Context", open=False, visible=False):
# get profiled user context
pass
generate_button = gr.Button("Generate Newsletter")
# create a button to open the newsletter in a new tab
download = gr.DownloadButton(label="Download Newsletter")
newsletter_output = gr.HTML(label="Generated Newsletter", min_height="500", value="<br><br><br><br><br>")
generate_button.click(
fn=generate_newsletter,
inputs=[
customer_id,
# llm preferences
model_name,
temperature,
max_tokens,
system_message,
# newsletter preferences
textual_preferences],
outputs=[newsletter_output, download]
)
demo.queue().launch(share=config['app']['share'], server_port=config['app']['server_port'])"""
if __name__ == "__main__":
main() |