SmilingWolf
commited on
Commit
•
03d2c4c
1
Parent(s):
8a0e72f
Update index to danbooru dataset v3
Browse filesAlso change model to wd-swinv2-tagger-v3
- Utils/dbimutils.py +0 -54
- app.py +29 -103
- index/cosine_ids.npy +2 -2
- index/cosine_infos.json +1 -1
- index/cosine_knn.index +2 -2
- requirements.txt +2 -2
Utils/dbimutils.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
# DanBooru IMage Utility functions
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
|
7 |
-
|
8 |
-
def smart_imread(img, flag=cv2.IMREAD_UNCHANGED):
|
9 |
-
if img.endswith(".gif"):
|
10 |
-
img = Image.open(img)
|
11 |
-
img = img.convert("RGB")
|
12 |
-
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
13 |
-
else:
|
14 |
-
img = cv2.imread(img, flag)
|
15 |
-
return img
|
16 |
-
|
17 |
-
|
18 |
-
def smart_24bit(img):
|
19 |
-
if img.dtype is np.dtype(np.uint16):
|
20 |
-
img = (img / 257).astype(np.uint8)
|
21 |
-
|
22 |
-
if len(img.shape) == 2:
|
23 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
24 |
-
elif img.shape[2] == 4:
|
25 |
-
trans_mask = img[:, :, 3] == 0
|
26 |
-
img[trans_mask] = [255, 255, 255, 255]
|
27 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
|
28 |
-
return img
|
29 |
-
|
30 |
-
|
31 |
-
def make_square(img, target_size):
|
32 |
-
old_size = img.shape[:2]
|
33 |
-
desired_size = max(old_size)
|
34 |
-
desired_size = max(desired_size, target_size)
|
35 |
-
|
36 |
-
delta_w = desired_size - old_size[1]
|
37 |
-
delta_h = desired_size - old_size[0]
|
38 |
-
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
|
39 |
-
left, right = delta_w // 2, delta_w - (delta_w // 2)
|
40 |
-
|
41 |
-
color = [255, 255, 255]
|
42 |
-
new_im = cv2.copyMakeBorder(
|
43 |
-
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
|
44 |
-
)
|
45 |
-
return new_im
|
46 |
-
|
47 |
-
|
48 |
-
def smart_resize(img, size):
|
49 |
-
# Assumes the image has already gone through make_square
|
50 |
-
if img.shape[0] > size:
|
51 |
-
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
|
52 |
-
elif img.shape[0] < size:
|
53 |
-
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
|
54 |
-
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,32 +1,22 @@
|
|
1 |
import argparse
|
2 |
-
import functools
|
3 |
import json
|
4 |
-
import os
|
5 |
-
from pathlib import Path
|
6 |
|
7 |
import faiss
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
-
import PIL.Image
|
11 |
import requests
|
12 |
-
|
13 |
-
from huggingface_hub import hf_hub_download
|
14 |
-
|
15 |
-
from Utils import dbimutils
|
16 |
|
17 |
TITLE = "## Danbooru Explorer"
|
18 |
DESCRIPTION = """
|
19 |
Image similarity-based retrieval tool using:
|
20 |
-
- [SmilingWolf/wd-
|
|
|
21 |
- [Faiss](https://github.com/facebookresearch/faiss) and [autofaiss](https://github.com/criteo/autofaiss) for indexing
|
22 |
|
23 |
Also, check out [SmilingWolf/danbooru2022_embeddings_playground](https://huggingface.co/spaces/SmilingWolf/danbooru2022_embeddings_playground) for a similar space with experimental support for text input combined with image input.
|
24 |
"""
|
25 |
|
26 |
-
CONV_MODEL_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
|
27 |
-
CONV_MODEL_REVISION = "v2.0"
|
28 |
-
CONV_FEXT_LAYER = "predictions_norm"
|
29 |
-
|
30 |
|
31 |
def parse_args() -> argparse.Namespace:
|
32 |
parser = argparse.ArgumentParser()
|
@@ -34,39 +24,6 @@ def parse_args() -> argparse.Namespace:
|
|
34 |
return parser.parse_args()
|
35 |
|
36 |
|
37 |
-
def download_model(model_repo, model_revision):
|
38 |
-
model_files = [
|
39 |
-
{"filename": "saved_model.pb", "subfolder": ""},
|
40 |
-
{"filename": "keras_metadata.pb", "subfolder": ""},
|
41 |
-
{"filename": "variables.index", "subfolder": "variables"},
|
42 |
-
{"filename": "variables.data-00000-of-00001", "subfolder": "variables"},
|
43 |
-
]
|
44 |
-
|
45 |
-
model_file_paths = []
|
46 |
-
for elem in model_files:
|
47 |
-
model_file_paths.append(
|
48 |
-
Path(
|
49 |
-
hf_hub_download(
|
50 |
-
model_repo,
|
51 |
-
revision=model_revision,
|
52 |
-
**elem,
|
53 |
-
)
|
54 |
-
)
|
55 |
-
)
|
56 |
-
|
57 |
-
model_path = model_file_paths[0].parents[0]
|
58 |
-
return model_path
|
59 |
-
|
60 |
-
|
61 |
-
def load_model(model_repo, model_revision, feature_extraction_layer):
|
62 |
-
model_path = download_model(model_repo, model_revision)
|
63 |
-
full_model = tf.keras.models.load_model(model_path)
|
64 |
-
model = tf.keras.models.Model(
|
65 |
-
full_model.inputs, full_model.get_layer(feature_extraction_layer).output
|
66 |
-
)
|
67 |
-
return model
|
68 |
-
|
69 |
-
|
70 |
def danbooru_id_to_url(image_id, selected_ratings, api_username="", api_key=""):
|
71 |
headers = {"User-Agent": "image_similarity_tool"}
|
72 |
ratings_to_letters = {
|
@@ -93,54 +50,30 @@ def danbooru_id_to_url(image_id, selected_ratings, api_username="", api_key=""):
|
|
93 |
|
94 |
|
95 |
class SimilaritySearcher:
|
96 |
-
def __init__(self
|
97 |
-
self.
|
98 |
-
self.
|
99 |
-
|
100 |
-
self.model = model
|
101 |
-
self.images_ids = images_ids
|
102 |
-
|
103 |
-
def change_index(self, knn_metric):
|
104 |
-
if knn_metric == self.knn_metric:
|
105 |
-
return
|
106 |
-
|
107 |
-
if knn_metric == "ip":
|
108 |
-
self.knn_index = faiss.read_index("index/ip_knn.index")
|
109 |
-
config = json.loads(open("index/ip_infos.json").read())["index_param"]
|
110 |
-
elif knn_metric == "cosine":
|
111 |
-
self.knn_index = faiss.read_index("index/cosine_knn.index")
|
112 |
-
config = json.loads(open("index/cosine_infos.json").read())["index_param"]
|
113 |
|
|
|
114 |
faiss.ParameterSpace().set_index_parameters(self.knn_index, config)
|
115 |
-
self.knn_metric = knn_metric
|
116 |
|
117 |
def predict(
|
118 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
119 |
):
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
new_image.paste(image, mask=image)
|
128 |
-
image = new_image.convert("RGB")
|
129 |
-
image = np.asarray(image)
|
130 |
-
|
131 |
-
# PIL RGB to OpenCV BGR
|
132 |
-
image = image[:, :, ::-1]
|
133 |
-
|
134 |
-
image = dbimutils.make_square(image, height)
|
135 |
-
image = dbimutils.smart_resize(image, height)
|
136 |
-
image = image.astype(np.float32)
|
137 |
-
image = np.expand_dims(image, 0)
|
138 |
-
target = self.model(image).numpy()
|
139 |
-
|
140 |
-
if self.knn_metric == "cosine":
|
141 |
-
faiss.normalize_L2(target)
|
142 |
|
143 |
-
dists, indexes = self.knn_index.search(
|
144 |
neighbours_ids = self.images_ids[indexes][0]
|
145 |
neighbours_ids = [int(x) for x in neighbours_ids]
|
146 |
|
@@ -148,7 +81,10 @@ class SimilaritySearcher:
|
|
148 |
image_urls = []
|
149 |
for image_id, dist in zip(neighbours_ids, dists[0]):
|
150 |
current_url = danbooru_id_to_url(
|
151 |
-
image_id,
|
|
|
|
|
|
|
152 |
)
|
153 |
if current_url is not None:
|
154 |
image_urls.append(current_url)
|
@@ -158,17 +94,14 @@ class SimilaritySearcher:
|
|
158 |
|
159 |
def main():
|
160 |
args = parse_args()
|
161 |
-
|
162 |
-
images_ids = np.load("index/cosine_ids.npy")
|
163 |
-
|
164 |
-
searcher = SimilaritySearcher(model=model, images_ids=images_ids)
|
165 |
|
166 |
with gr.Blocks() as demo:
|
167 |
gr.Markdown(TITLE)
|
168 |
gr.Markdown(DESCRIPTION)
|
169 |
|
170 |
with gr.Row():
|
171 |
-
|
172 |
with gr.Column():
|
173 |
with gr.Row():
|
174 |
api_username = gr.Textbox(label="Danbooru API Username")
|
@@ -179,12 +112,6 @@ def main():
|
|
179 |
label="Ratings",
|
180 |
)
|
181 |
with gr.Row():
|
182 |
-
selected_metric = gr.Radio(
|
183 |
-
choices=["cosine"],
|
184 |
-
value="cosine",
|
185 |
-
label="Metric selection",
|
186 |
-
visible=False,
|
187 |
-
)
|
188 |
n_neighbours = gr.Slider(
|
189 |
minimum=1,
|
190 |
maximum=20,
|
@@ -198,12 +125,11 @@ def main():
|
|
198 |
find_btn.click(
|
199 |
fn=searcher.predict,
|
200 |
inputs=[
|
201 |
-
|
202 |
selected_ratings,
|
203 |
-
|
204 |
api_username,
|
205 |
api_key,
|
206 |
-
n_neighbours,
|
207 |
],
|
208 |
outputs=[similar_images],
|
209 |
)
|
|
|
1 |
import argparse
|
|
|
2 |
import json
|
|
|
|
|
3 |
|
4 |
import faiss
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
|
|
7 |
import requests
|
8 |
+
from imgutils.tagging import wd14
|
|
|
|
|
|
|
9 |
|
10 |
TITLE = "## Danbooru Explorer"
|
11 |
DESCRIPTION = """
|
12 |
Image similarity-based retrieval tool using:
|
13 |
+
- [SmilingWolf/wd-swinv2-tagger-v3](https://huggingface.co/SmilingWolf/wd-swinv2-tagger-v3) as feature extractor
|
14 |
+
- [dghs-imgutils](https://github.com/deepghs/imgutils) for feature extraction
|
15 |
- [Faiss](https://github.com/facebookresearch/faiss) and [autofaiss](https://github.com/criteo/autofaiss) for indexing
|
16 |
|
17 |
Also, check out [SmilingWolf/danbooru2022_embeddings_playground](https://huggingface.co/spaces/SmilingWolf/danbooru2022_embeddings_playground) for a similar space with experimental support for text input combined with image input.
|
18 |
"""
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def parse_args() -> argparse.Namespace:
|
22 |
parser = argparse.ArgumentParser()
|
|
|
24 |
return parser.parse_args()
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def danbooru_id_to_url(image_id, selected_ratings, api_username="", api_key=""):
|
28 |
headers = {"User-Agent": "image_similarity_tool"}
|
29 |
ratings_to_letters = {
|
|
|
50 |
|
51 |
|
52 |
class SimilaritySearcher:
|
53 |
+
def __init__(self):
|
54 |
+
self.images_ids = np.load("index/cosine_ids.npy")
|
55 |
+
self.knn_index = faiss.read_index("index/cosine_knn.index")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
config = json.loads(open("index/cosine_infos.json").read())["index_param"]
|
58 |
faiss.ParameterSpace().set_index_parameters(self.knn_index, config)
|
|
|
59 |
|
60 |
def predict(
|
61 |
+
self,
|
62 |
+
img_input,
|
63 |
+
selected_ratings,
|
64 |
+
n_neighbours,
|
65 |
+
api_username,
|
66 |
+
api_key,
|
67 |
):
|
68 |
+
embeddings = wd14.get_wd14_tags(
|
69 |
+
img_input,
|
70 |
+
model_name="SwinV2_v3",
|
71 |
+
fmt=("embedding"),
|
72 |
+
)
|
73 |
+
embeddings = np.expand_dims(embeddings, 0)
|
74 |
+
faiss.normalize_L2(embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
dists, indexes = self.knn_index.search(embeddings, k=n_neighbours)
|
77 |
neighbours_ids = self.images_ids[indexes][0]
|
78 |
neighbours_ids = [int(x) for x in neighbours_ids]
|
79 |
|
|
|
81 |
image_urls = []
|
82 |
for image_id, dist in zip(neighbours_ids, dists[0]):
|
83 |
current_url = danbooru_id_to_url(
|
84 |
+
image_id,
|
85 |
+
selected_ratings,
|
86 |
+
api_username,
|
87 |
+
api_key,
|
88 |
)
|
89 |
if current_url is not None:
|
90 |
image_urls.append(current_url)
|
|
|
94 |
|
95 |
def main():
|
96 |
args = parse_args()
|
97 |
+
searcher = SimilaritySearcher()
|
|
|
|
|
|
|
98 |
|
99 |
with gr.Blocks() as demo:
|
100 |
gr.Markdown(TITLE)
|
101 |
gr.Markdown(DESCRIPTION)
|
102 |
|
103 |
with gr.Row():
|
104 |
+
img_input = gr.Image(type="pil", label="Input")
|
105 |
with gr.Column():
|
106 |
with gr.Row():
|
107 |
api_username = gr.Textbox(label="Danbooru API Username")
|
|
|
112 |
label="Ratings",
|
113 |
)
|
114 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
n_neighbours = gr.Slider(
|
116 |
minimum=1,
|
117 |
maximum=20,
|
|
|
125 |
find_btn.click(
|
126 |
fn=searcher.predict,
|
127 |
inputs=[
|
128 |
+
img_input,
|
129 |
selected_ratings,
|
130 |
+
n_neighbours,
|
131 |
api_username,
|
132 |
api_key,
|
|
|
133 |
],
|
134 |
outputs=[similar_images],
|
135 |
)
|
index/cosine_ids.npy
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36f75b729ccdb6f46abbae84e1587a4e93387846a31f5ecd6ed0523ec731e3be
|
3 |
+
size 26567768
|
index/cosine_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"index_key": "OPQ256_1280,IVF16384_HNSW32,PQ256x8", "index_param": "nprobe=16,efSearch=32,ht=2048", "index_path": "/home/SmilingWolf/eval/index/
|
|
|
1 |
+
{"index_key": "OPQ256_1280,IVF16384_HNSW32,PQ256x8", "index_param": "nprobe=16,efSearch=32,ht=2048", "index_path": "/home/SmilingWolf/eval/index/swinv2_base_2024_03_13_17h37m11s_cosine_knn.index", "size in bytes": 1848491744, "avg_search_speed_ms": 12.240526417507978, "99p_search_speed_ms": 15.45338472060394, "reconstruction error %": 20.334696769714355, "nb vectors": 6641910, "vectors dimension": 1024, "compression ratio": 14.717546588079324}
|
index/cosine_knn.index
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:615ea848c51b153c4481ecfffcde206c56fc607eb88be99b996ab14f413b985a
|
3 |
+
size 1848491744
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
pillow>=9.0.0
|
2 |
-
opencv-python
|
3 |
-
tensorflow-cpu~=2.15.1
|
4 |
faiss-cpu
|
|
|
|
|
|
1 |
pillow>=9.0.0
|
|
|
|
|
2 |
faiss-cpu
|
3 |
+
dghs-imgutils
|
4 |
+
onnxruntime
|