File size: 8,719 Bytes
1decd71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import openmeteo_requests
import requests_cache
import polars as pl
from retry_requests import retry
import streamlit as st
from datetime import datetime, timedelta
import pytz
from lets_plot import *
from streamlit_letsplot import st_letsplot
import numpy as np 
#API Fetch
openmeteo = openmeteo_requests.Client()

#Empty Frames
locations = [
    {"name": "Rexburg, Idaho", "latitude": 43.8251, "longitude": -111.7924},
    {"name": "Provo, Utah", "latitude": 40.2338, "longitude": -111.6585},
    {"name": "Laie, Hawaii", "latitude": 21.6210, "longitude": -157.9753}
]
location_names = [location["name"] for location in locations]
filtered_forecasts = {}
filtered_histories = {}
historical_data = []
forecast_data = []
timezones = pytz.all_timezones
def find_max(df):
       daily_highs = df.group_by(by = 'Date').agg(pl.max("Temperature").alias('max'))
       return daily_highs, df


# Date Variables
today = datetime.today()
default = today - timedelta(days=14)

# Streamlit Variables
start_date = st.sidebar.date_input(
    'Select start date:',
    value = default,
    max_value= default
)

selected_timezone = st.sidebar.selectbox(
    'Choose a timezone:',
    timezones
)
end_date = start_date + timedelta(days=14)

temperature_option = st.sidebar.selectbox(
    'Select Temperature Type',
    ('Highest', 'Lowest')
)

city_option = st.sidebar.selectbox(
    'Select City',
    ('Rexburg, Idaho', 'Provo, Utah', 'Laie, Hawaii')
)
# Display the selected date range
st.sidebar.write(f"Date Range: {start_date} to {end_date}")

# Get Forecast Data
for location in locations:
    url = "https://api.open-meteo.com/v1/forecast"
    params = {
        "latitude": location["latitude"],
        "longitude": location["longitude"],
        "start_date": start_date.strftime('%Y-%m-%d'),
        "end_date": end_date.strftime('%Y-%m-%d'),
        "hourly": "temperature_2m"
    }

    # Fetch weather data
    responses = openmeteo.weather_api(url, params=params)
    response = responses[0]
    hourly = response.Hourly()
    hourly_temperature_2m = hourly.Variables(0).ValuesAsNumpy()

    # Convert timestamp to datetime
    start = datetime.fromtimestamp(hourly.Time())
    end = datetime.fromtimestamp(hourly.TimeEnd())
    freq = timedelta(seconds=hourly.Interval())

    # Create Polars DataFrame
    hourly_data = pl.select(
  date = pl.datetime_range(start, end, freq, closed = "left"),
  temperature_2m = hourly_temperature_2m,
  location = [location["name"]])

    hourly_dataframe = pl.DataFrame(data = hourly_data)


    historical_data.append(hourly_dataframe)
# Concatenate all DataFrames
combined_historical = pl.DataFrame(pl.concat(historical_data)).explode('location')



# Get True Historical Data
for location in locations:
    url = "https://archive-api.open-meteo.com/v1/archive"
    params = {
        "latitude": location["latitude"],
        "longitude": location["longitude"],
        "start_date": start_date.strftime('%Y-%m-%d'),
        "end_date": end_date.strftime('%Y-%m-%d'),
        "hourly": "temperature_2m"
    }

    # Fetch weather data
    responses = openmeteo.weather_api(url, params=params)
    response = responses[0]
    hourly = response.Hourly()
    hourly_temperature_2m = hourly.Variables(0).ValuesAsNumpy()

    # Convert timestamp to datetime
    start = datetime.fromtimestamp(hourly.Time())
    end = datetime.fromtimestamp(hourly.TimeEnd())
    freq = timedelta(seconds=hourly.Interval())

    # Create Polars DataFrame
    hourly_data = pl.select(
  date = pl.datetime_range(start, end, freq, closed = "left"),
  temperature_2m = hourly_temperature_2m,
  location = [location["name"]])

    hourly_dataframe = pl.DataFrame(data = hourly_data)


    forecast_data.append(hourly_dataframe)

combined_forecast = pl.DataFrame(pl.concat(forecast_data)).explode('location')

for name in location_names:
    filtered_forecasts[name] = (combined_forecast.filter(pl.col("location") == name).drop('location').rename({'date': 'Date'}).rename({'temperature_2m': 'Temperature'}).with_columns(pl.col('Temperature') * 9/5 + 32))
    filtered_histories[name] = (combined_historical.filter(pl.col("location") == name).drop('location').rename({'date': 'Date'}).rename({'temperature_2m': 'Temperature'}).with_columns(pl.col('Temperature') * 9/5 + 32))


tab1, tab2, tab3 = st.tabs(["Data", "Visualisations", "KPIs"])

with tab1:
  st.title("Forecasted Weather vs Actual Weather by City")
  st.header('Forecasts')
  st.markdown("<h2 style='text-align: center; color: white;'>Rexburg</h2>", unsafe_allow_html=True)

# Create two columns for Rexburg content
  rexburg_col1, rexburg_col2 = st.columns(2)

# Rexburg content
  with rexburg_col1:
    st.write("Forecasts")
    st.dataframe(filtered_forecasts["Rexburg, Idaho"], use_container_width=True, hide_index=True)

  with rexburg_col2:
    st.write("Historical Data")
    st.dataframe(filtered_histories["Rexburg, Idaho"], use_container_width=True, hide_index=True)

# Provo Header
  st.markdown("<h2 style='text-align: center; color: white;'>Provo</h2>", unsafe_allow_html=True)

# Create two columns for Provo content
  provo_col1, provo_col2 = st.columns(2)

# Provo content
  with provo_col1:
    st.write("Forecasts")
    st.dataframe(filtered_forecasts["Provo, Utah"], use_container_width=True, hide_index=True)

  with provo_col2:
    st.write("Historical Data")
    st.dataframe(filtered_histories["Provo, Utah"], use_container_width=True, hide_index=True)

# Laie Header
  st.markdown("<h2 style='text-align: center; color: white;'>Laie</h2>", unsafe_allow_html=True)

# Create two columns for Laie content
  laie_col1, laie_col2 = st.columns(2)

# Laie content
  with laie_col1:
    st.write("Forecasts")
    st.dataframe(filtered_forecasts["Laie, Hawaii"], use_container_width=True, hide_index=True)


  with laie_col2:
    st.write("Historical Data")
    st.dataframe(filtered_histories["Laie, Hawaii"], use_container_width=True, hide_index=True)

with tab2: 
    st.header('Visualisations by City')



    st.subheader("Forecasted Data vs. Historical Data")
    
    combined_forecast = combined_forecast.rename({'date': 'Date'}).rename({'temperature_2m': 'Temperature'}).with_columns(pl.col('Temperature') * 9/5 + 32).with_columns(pl.col('Date').cast(datetime))
    combined_historical = combined_historical.rename({'date': 'Date'}).rename({'temperature_2m': 'Temperature'}).with_columns(pl.col('Temperature') * 9/5 + 32).with_columns(pl.col('Date').cast(datetime))

    reg_forecasted = ggplot(combined_forecast, aes(x='Date', y='Temperature', color = 'location')) \
        + geom_line() \
        + facet_wrap('location', ncol = 1) \
        + labs(title = f'Hourly Temperatures',
            x = 'Date', y = 'Temperature (°F)', color = 'City Name') + \
            guides(color="none") + \
            scale_x_datetime(format = '%m/%d')
    
    reg_historical = ggplot(combined_historical, aes(x='Date', y='Temperature', color = 'location')) \
        + geom_line() \
        + facet_wrap('location', ncol = 1) \
        + labs(title = f'Hourly Temperatures',
            x = 'Date', y = 'Temperature (°F)', color = 'City Name') + \
            guides(color="none") + \
            scale_x_datetime(format = '%m/%d')
    
    st.subheader('Forecasted')
    st_letsplot(reg_forecasted)
    st.subheader('Historical')
    st_letsplot(reg_historical)
    st.subheader('Boxplot of Average Hourly Temperature')
    box_plot = ggplot(combined_forecast, aes(x='location', y='Temperature', color = 'location')) + \
                geom_jitter(alpha = .65) + \
                geom_boxplot(alpha = .9) + \
                labs(title=f'Hourly Temperature Readings',
                 x='City', y='Temperature (°F)') + \
                 guides(color = "none")
    st_letsplot(box_plot)
    maxes = combined_historical.group_by('location').agg((pl.col('Temperature').max()))
    max_plot = ggplot(maxes, aes(x = 'location', y = 'Temperature', color = 'location')) + \
                geom_bar(stat='identity') + \
                labs(x = 'City Name', y = 'Max Temperature in Month (°F)')
    st.subheader('Maximum Temperature for Period')
    st_letsplot(max_plot)

with tab3:
   if temperature_option == 'Highest':

    highest_temp = combined_historical.filter(pl.col('location') == city_option).select(pl.max('Temperature')).item()
    st.metric(label=f"Highest Temperature in {city_option}", value=f"{round(highest_temp,2)} °F")
   else:
    # Get the lowest temperature and its corresponding date
    lowest_temp = combined_historical.filter(pl.col('location') == city_option).select(pl.min('Temperature')).item()
    st.metric(label=f"Highest Temperature in {city_option}", value=f"{round(lowest_temp,2)} °F")