File size: 5,331 Bytes
b2458f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse

import numpy
import numpy as np
import pydub
import torch

import commons
import utils
from models import SynthesizerTrn
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
from text.symbols import symbols

# 当前版本信息
latest_version = "2.0"


def get_net_g(model_path: str, device: str, hps):
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()
    _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    return net_g


def get_text(text, language_str, hps, device):
    # 在此处实现当前版本的get_text
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str, device)
    del word2ph
    assert bert.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert
        sh_bert = torch.zeros(1024, len(phone))
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == "SH":
        bert = torch.zeros(1024, len(phone))
        sh_bert = bert
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == "EN":
        bert = torch.zeros(1024, len(phone))
        sh_bert = torch.zeros(1024, len(phone))
        en_bert = bert
    else:
        raise ValueError("language_str should be ZH, SH or EN")

    assert bert.shape[-1] == len(phone), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, sh_bert, en_bert, phone, tone, language


def infer(
        text,
        sdp_ratio,
        noise_scale,
        noise_scale_w,
        length_scale,
        sid,
        language,
        hps,
        net_g,
        device,
):
    bert, sh_bert, en_bert, phones, tones, lang_ids = get_text(text, language, hps, device)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        sh_bert = sh_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                sh_bert,
                en_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        torch.cuda.empty_cache()
        return audio


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, default='configs/config.json')
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--model_path', type=str, default='models/G_1000.pth')
    parser.add_argument('--output', type=str, default='sample')
    args = parser.parse_args()

    hps = utils.get_hparams_from_file(args.config)
    net_g = get_net_g(args.model_path, device=args.device, hps=hps)

    # noise_scale = 0.667
    # noise_scale_w = 0.8
    # length_scale = 0.9

    sdp_ratio = 0
    noise_scale = 0.667
    noise_scale_w = 0.8
    length_scale = 0.9

    def do_sample(texts, sid, export_tag):
        audio_data = numpy.array([], dtype=numpy.float32)

        for (sub_text, language) in texts:
            sub_audio_data = infer(sub_text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language, hps, net_g, args.device)
            audio_data = np.concatenate((audio_data, sub_audio_data))

        audio_data = audio_data / numpy.abs(audio_data).max()
        audio_data = audio_data * 32767
        audio_data = audio_data.astype(numpy.int16)
        sound = pydub.AudioSegment(audio_data, frame_rate=hps.data.sampling_rate, sample_width=audio_data.dtype.itemsize, channels=1)
        export_filename = args.output + export_tag + sid + '.mp3'
        sound.export(export_filename, format='mp3')
        print(export_filename)

    text = [('我觉得有点贵。', 'ZH'), ('so expensive, can they?', 'EN'), ('哈巨,吃不消它。', 'SH')]

    do_sample(text, '小庄', '_1_')
    do_sample(text, '小嘟', '_1_')
    do_sample(text, 'Jane', '_1_')
    do_sample(text, '小贝', '_1_')
    do_sample(text, '老克勒', '_1_')
    do_sample(text, '美琳', '_1_')

    pass


if __name__ == "__main__":
    main()