Watermarking_Generate_Text / models /watermark_original.py
Snowball's picture
Upload 6 files
f115ecd
raw
history blame
18.3 kB
import nltk
from nltk.corpus import stopwords
from nltk import word_tokenize, pos_tag
import torch
import torch.nn.functional as F
from torch import nn
import hashlib
from scipy.stats import norm
import gensim
import pdb
from transformers import BertForMaskedLM as WoBertForMaskedLM
from wobert import WoBertTokenizer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import BertForMaskedLM, BertTokenizer, RobertaForSequenceClassification, RobertaTokenizer
import gensim.downloader as api
import Levenshtein
import string
import spacy
import paddle
from jieba import posseg
paddle.enable_static()
import re
def cut_sent(para):
para = re.sub('([。!?\?])([^”’])', r'\1\n\2', para)
para = re.sub('([。!?\?][”’])([^,。!?\?\n ])', r'\1\n\2', para)
para = re.sub('(\.{6}|\…{2})([^”’\n])', r'\1\n\2', para)
para = re.sub('([^。!?\?]*)([::][^。!?\?\n]*)', r'\1\n\2', para)
para = re.sub('([。!?\?][”’])$', r'\1\n', para)
para = para.rstrip()
return para.split("\n")
def is_subword(token: str):
return token.startswith('##')
def binary_encoding_function(token):
hash_value = int(hashlib.sha256(token.encode('utf-8')).hexdigest(), 16)
random_bit = hash_value % 2
return random_bit
def is_similar(x, y, threshold=0.5):
distance = Levenshtein.distance(x, y)
if distance / max(len(x), len(y)) < threshold:
return True
return False
class watermark_model:
def __init__(self, language, mode, tau_word, lamda):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.language = language
self.mode = mode
self.tau_word = tau_word
self.tau_sent = 0.8
self.lamda = lamda
self.cn_tag_black_list = set(['','x','u','j','k','zg','y','eng','uv','uj','ud','nr','nrfg','nrt','nw','nz','ns','nt','m','mq','r','w','PER','LOC','ORG'])#set(['','f','u','nr','nw','nz','m','r','p','c','w','PER','LOC','ORG'])
self.en_tag_white_list = set(['MD', 'NN', 'NNS', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'RP', 'RB', 'RBR', 'RBS', 'JJ', 'JJR', 'JJS'])
if language == 'Chinese':
self.relatedness_tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Erlangshen-Roberta-330M-Similarity")
self.relatedness_model = AutoModelForSequenceClassification.from_pretrained("IDEA-CCNL/Erlangshen-Roberta-330M-Similarity").to(self.device)
self.tokenizer = WoBertTokenizer.from_pretrained("junnyu/wobert_chinese_plus_base")
self.model = WoBertForMaskedLM.from_pretrained("junnyu/wobert_chinese_plus_base", output_hidden_states=True).to(self.device)
self.w2v_model = gensim.models.KeyedVectors.load_word2vec_format('sgns.merge.word.bz2', binary=False, unicode_errors='ignore', limit=50000)
elif language == 'English':
self.tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
self.model = BertForMaskedLM.from_pretrained('bert-base-cased', output_hidden_states=True).to(self.device)
self.relatedness_model = RobertaForSequenceClassification.from_pretrained('roberta-large-mnli').to(self.device)
self.relatedness_tokenizer = RobertaTokenizer.from_pretrained('roberta-large-mnli')
self.w2v_model = api.load("glove-wiki-gigaword-100")
nltk.download('stopwords')
self.stop_words = set(stopwords.words('english'))
self.nlp = spacy.load('en_core_web_sm')
def cut(self,ori_text,text_len):
if self.language == 'Chinese':
if len(ori_text) > text_len+5:
ori_text = ori_text[:text_len+5]
if len(ori_text) < text_len-5:
return 'Short'
elif self.language == 'English':
tokens = self.tokenizer.tokenize(ori_text)
if len(tokens) > text_len+5:
ori_text = self.tokenizer.convert_tokens_to_string(tokens[:text_len+5])
if len(tokens) < text_len-5:
return 'Short'
return ori_text
else:
print(f'Unsupported Language:{self.language}')
raise NotImplementedError
def sent_tokenize(self,ori_text):
if self.language == 'Chinese':
return cut_sent(ori_text)
elif self.language == 'English':
return nltk.sent_tokenize(ori_text)
def pos_filter(self, tokens, masked_token_index, input_text):
if self.language == 'Chinese':
pairs = posseg.lcut(input_text)
pos_dict = {word: pos for word, pos in pairs}
pos_list_input = [pos for _, pos in pairs]
pos = pos_dict.get(tokens[masked_token_index], '')
if pos in self.cn_tag_black_list:
return False
else:
return True
elif self.language == 'English':
pos_tags = pos_tag(tokens)
pos = pos_tags[masked_token_index][1]
if pos not in self.en_tag_white_list:
return False
if is_subword(tokens[masked_token_index]) or is_subword(tokens[masked_token_index+1]) or (tokens[masked_token_index] in self.stop_words or tokens[masked_token_index] in string.punctuation):
return False
return True
def filter_special_candidate(self, top_n_tokens, tokens,masked_token_index,input_text):
if self.language == 'English':
filtered_tokens = [tok for tok in top_n_tokens if tok not in self.stop_words and tok not in string.punctuation and pos_tag([tok])[0][1] in self.en_tag_white_list and not is_subword(tok)]
lemmatized_tokens = []
# for token in filtered_tokens:
# doc = self.nlp(token)
# lemma = doc[0].lemma_ if doc[0].lemma_ != "-PRON-" else token
# lemmatized_tokens.append(lemma)
base_word = tokens[masked_token_index]
base_word_lemma = self.nlp(base_word)[0].lemma_
processed_tokens = [base_word]+[tok for tok in filtered_tokens if self.nlp(tok)[0].lemma_ != base_word_lemma]
return processed_tokens
elif self.language == 'Chinese':
pairs = posseg.lcut(input_text)
pos_dict = {word: pos for word, pos in pairs}
pos_list_input = [pos for _, pos in pairs]
pos = pos_dict.get(tokens[masked_token_index], '')
filtered_tokens = []
for tok in top_n_tokens:
watermarked_text_segtest = self.tokenizer.convert_tokens_to_string(tokens[1:masked_token_index] + [tok] + tokens[masked_token_index+1:-1])
watermarked_text_segtest = re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff,。?!、:])|(?<=[\u4e00-\u9fff,。?!、:])\s+(?=[\u4e00-\u9fff])', '', watermarked_text_segtest)
pairs_tok = posseg.lcut(watermarked_text_segtest)
pos_dict_tok = {word: pos for word, pos in pairs_tok}
flag = pos_dict_tok.get(tok, '')
if flag not in self.cn_tag_black_list and flag == pos:
filtered_tokens.append(tok)
processed_tokens = filtered_tokens
return processed_tokens
def global_word_sim(self,word,ori_word):
try:
global_score = self.w2v_model.similarity(word,ori_word)
except KeyError:
global_score = 0
return global_score
def context_word_sim(self,init_candidates, tokens, masked_token_index, input_text):
original_input_tensor = self.tokenizer.encode(input_text,return_tensors='pt').to(self.device)
batch_input_ids = [[self.tokenizer.convert_tokens_to_ids(['[CLS]'] + tokens[1:masked_token_index] + [token] + tokens[masked_token_index+1:-1]+ ['[SEP]'])] for token in init_candidates]
batch_input_tensors = torch.tensor(batch_input_ids).squeeze().to(self.device)
batch_input_tensors = torch.cat((batch_input_tensors,original_input_tensor),dim=0)
with torch.no_grad():
outputs = self.model(batch_input_tensors)
cos_sims = torch.zeros([len(init_candidates)]).to(self.device)
num_layers = len(outputs[1])
N = 8
i = masked_token_index
cos_sim_sum = 0
for layer in range(num_layers-N,num_layers):
ls_hidden_states = outputs[1][layer][0:len(init_candidates), i, :]
source_hidden_state = outputs[1][layer][len(init_candidates), i, :]
cos_sim_sum += F.cosine_similarity(source_hidden_state, ls_hidden_states, dim=1)
cos_sim_avg = cos_sim_sum / N
cos_sims += cos_sim_avg
return cos_sims.tolist()
def sentence_sim(self,init_candidates, tokens, masked_token_index, input_text):
if self.language == 'Chinese':
batch_sents = [self.tokenizer.convert_tokens_to_string(tokens[1:masked_token_index] + [token] + tokens[masked_token_index+1:-1]) for token in init_candidates]
batch_sentences = [re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff,。?!、:])|(?<=[\u4e00-\u9fff,。?!、:])\s+(?=[\u4e00-\u9fff])', '', sent) for sent in batch_sents]
roberta_inputs = [input_text + '[SEP]' + s for s in batch_sentences]
elif self.language == 'English':
batch_sentences = [self.tokenizer.convert_tokens_to_string(tokens[1:masked_token_index] + [token] + tokens[masked_token_index+1:-1]) for token in init_candidates]
roberta_inputs = [input_text + '</s></s>' + s for s in batch_sentences]
encoded_dict = self.relatedness_tokenizer.batch_encode_plus(
roberta_inputs,
padding=True,
truncation=True,
max_length=512,
return_tensors='pt')
# Extract input_ids and attention_masks
input_ids = encoded_dict['input_ids'].to(self.device)
attention_masks = encoded_dict['attention_mask'].to(self.device)
with torch.no_grad():
outputs = self.relatedness_model(input_ids=input_ids, attention_mask=attention_masks)
logits = outputs[0]
probs = torch.softmax(logits, dim=1)
if self.language == 'Chinese':
relatedness_scores = probs[:, 1].tolist()
elif self.language == 'English':
relatedness_scores = probs[:, 2].tolist()
return relatedness_scores
def candidates_gen(self,tokens,masked_token_index,input_text,topk=64, dropout_prob=0.3):
input_ids_bert = self.tokenizer.convert_tokens_to_ids(tokens)
if not self.pos_filter(tokens,masked_token_index,input_text):
return []
masked_text = self.tokenizer.convert_tokens_to_string(tokens)
# Create a tensor of input IDs
input_tensor = torch.tensor([input_ids_bert]).to(self.device)
with torch.no_grad():
embeddings = self.model.bert.embeddings(input_tensor)
dropout = nn.Dropout2d(p=dropout_prob)
# Get the predicted logits
embeddings[:, masked_token_index, :] = dropout(embeddings[:, masked_token_index, :])
with torch.no_grad():
outputs = self.model(inputs_embeds=embeddings)
predicted_logits = outputs[0][0][masked_token_index]
# Set the number of top predictions to return
n = topk
# Get the top n predicted tokens and their probabilities
probs = torch.nn.functional.softmax(predicted_logits, dim=-1)
top_n_probs, top_n_indices = torch.topk(probs, n)
top_n_tokens = self.tokenizer.convert_ids_to_tokens(top_n_indices.tolist())
processed_tokens = self.filter_special_candidate(top_n_tokens,tokens,masked_token_index)
return processed_tokens
def filter_candidates(self, init_candidates, tokens, masked_token_index, input_text):
context_word_similarity_scores = self.context_word_sim(init_candidates, tokens, masked_token_index, input_text)
sentence_similarity_scores = self.sentence_sim(init_candidates, tokens, masked_token_index, input_text)
filtered_candidates = []
for idx, candidate in enumerate(init_candidates):
global_word_similarity_score = self.global_word_sim(tokens[masked_token_index], candidate)
word_similarity_score = self.lamda*context_word_similarity_scores[idx]+(1-self.lamda)*global_word_similarity_score
if word_similarity_score >= self.tau_word and sentence_similarity_scores[idx] >= self.tau_sent:
filtered_candidates.append((candidate, word_similarity_score))#, sentence_similarity_scores[idx]))
return filtered_candidates
def watermark_embed(self,text):
input_text = text
# Tokenize the input text
tokens = self.tokenizer.tokenize(input_text)
tokens = ['[CLS]'] + tokens + ['[SEP]']
masked_tokens=tokens.copy()
start_index = 1
end_index = len(tokens) - 1
for masked_token_index in range(start_index+1, end_index-1):
# pdb.set_trace()
binary_encoding = binary_encoding_function(tokens[masked_token_index - 1] + tokens[masked_token_index])
if binary_encoding == 1:
continue
init_candidates = self.candidates_gen(tokens,masked_token_index,input_text, 32, 0.3)
if len(init_candidates) <=1:
continue
enhanced_candidates = self.filter_candidates(init_candidates,tokens,masked_token_index,input_text)
hash_top_tokens = enhanced_candidates.copy()
for i, tok in enumerate(enhanced_candidates):
binary_encoding = binary_encoding_function(tokens[masked_token_index - 1] + tok[0])
if binary_encoding != 1 or (is_similar(tok[0], tokens[masked_token_index])) or (tokens[masked_token_index - 1] in tok or tokens[masked_token_index + 1] in tok):
hash_top_tokens.remove(tok)
hash_top_tokens.sort(key=lambda x: x[1], reverse=True)
if len(hash_top_tokens) > 0:
selected_token = hash_top_tokens[0][0]
else:
selected_token = tokens[masked_token_index]
tokens[masked_token_index] = selected_token
watermarked_text = self.tokenizer.convert_tokens_to_string(tokens[1:-1])
if self.language == 'Chinese':
watermarked_text = re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff,。?!、:])|(?<=[\u4e00-\u9fff,。?!、:])\s+(?=[\u4e00-\u9fff])', '', watermarked_text)
return watermarked_text
def embed(self, ori_text):
sents = self.sent_tokenize(ori_text)
sents = [s for s in sents if s.strip()]
num_sents = len(sents)
watermarked_text = ''
for i in range(0, num_sents, 2):
if i+1 < num_sents:
sent_pair = sents[i] + sents[i+1]
else:
sent_pair = sents[i]
if len(watermarked_text) == 0:
watermarked_text = self.watermark_embed(sent_pair)
else:
watermarked_text = watermarked_text + self.watermark_embed(sent_pair)
if len(self.get_encodings_fast(ori_text)) == 0:
return ''
return watermarked_text
def get_encodings_fast(self,text):
sents = self.sent_tokenize(text)
sents = [s for s in sents if s.strip()]
num_sents = len(sents)
encodings = []
for i in range(0, num_sents, 2):
if i+1 < num_sents:
sent_pair = sents[i] + sents[i+1]
else:
sent_pair = sents[i]
tokens = self.tokenizer.tokenize(sent_pair)
for index in range(1,len(tokens)-1):
if not self.pos_filter(tokens,index,text):
continue
bit = binary_encoding_function(tokens[index-1]+tokens[index])
encodings.append(bit)
return encodings
def watermark_detector_fast(self, text,alpha=0.05):
p = 0.5
encodings = self.get_encodings_fast(text)
n = len(encodings)
ones = sum(encodings)
z = (ones - p * n) / (n * p * (1 - p)) ** 0.5
threshold = norm.ppf(1 - alpha, loc=0, scale=1)
p_value = norm.sf(z)
is_watermark = z >= threshold
return is_watermark, p_value, n, ones, z
def get_encodings_precise(self, text):
sents = self.sent_tokenize(text)
sents = [s for s in sents if s.strip()]
num_sents = len(sents)
encodings = []
for i in range(0, num_sents, 2):
if i+1 < num_sents:
sent_pair = sents[i] + sents[i+1]
else:
sent_pair = sents[i]
tokens = self.tokenizer.tokenize(sent_pair)
tokens = ['[CLS]'] + tokens + ['[SEP]']
masked_tokens=tokens.copy()
start_index = 1
end_index = len(tokens) - 1
for masked_token_index in range(start_index+1, end_index-1):
init_candidates = self.candidates_gen(tokens,masked_token_index,sent_pair, 8, 0)
if len(init_candidates) <=1:
continue
enhanced_candidates = self.filter_candidates(init_candidates,tokens,masked_token_index,sent_pair)
if len(enhanced_candidates) > 1:
bit = binary_encoding_function(tokens[masked_token_index-1]+tokens[masked_token_index])
encodings.append(bit)
return encodings
def watermark_detector_precise(self,text,alpha=0.05):
p = 0.5
encodings = self.get_encodings_precise(text)
n = len(encodings)
ones = sum(encodings)
if n == 0:
z = 0
else:
z = (ones - p * n) / (n * p * (1 - p)) ** 0.5
threshold = norm.ppf(1 - alpha, loc=0, scale=1)
p_value = norm.sf(z)
is_watermark = z >= threshold
return is_watermark, p_value, n, ones, z