File size: 2,332 Bytes
b154f93
 
 
4e73bd2
48a6951
 
4453c2c
4e73bd2
b154f93
 
 
 
 
 
 
 
4e73bd2
fd430b5
4e73bd2
 
48a6951
 
 
 
dc52ede
e67d752
 
 
 
f81bf96
 
a783e4a
48a6951
 
 
 
 
 
 
52eeda6
777fc73
 
48a6951
53367b9
 
71a4d6b
75871a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import streamlit as st
from transformers import pipeline

# Turkish 
#sentiment_pipeline_tr = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech-detection")           # "gritli/bert-sentiment-analyses-imdb"
#sentiment_pipeline_tr_test = pipeline(task = "text-classification", model = "SoDehghan/test")            
strength_pipeline_tr  = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech-strength-prediction")  

def write():
    st.markdown(
    """
    # Hate Speech Detection in Turkish
    
    """
    )

    tr_input = st.text_area("Enter your text here:", height=50, key="tr_input")  #height=30
    if st.button("Model prediction", key="tr_predict"):
       st.write(" ")
       with st.spinner('Generating predictions...'):
         #result_sentiment_tr = sentiment_pipeline_tr(tr_input)
         #sentiment_tr = result_sentiment_tr[0]["label"]
         #label_dict_sentiment = {'LABEL_1': 'Detection: Hate ❌', 'LABEL_0': 'Detection: Non-hate βœ…'}  
         #sentiment_tr = label_dict_sentiment[sentiment_tr]

         #result_sentiment_tr_test = sentiment_pipeline_tr_test(tr_input)
         #sentiment_tr_test = result_sentiment_tr_test[0]["label"]
         #label_dict_sentiment = {'LABEL_1': 'Detection: Hate ❌', 'LABEL_0': 'Detection: Non-hate βœ…'}  
         #sentiment_tr_test = label_dict_sentiment[sentiment_tr_test]  

         result_strength_tr = strength_pipeline_tr(tr_input)
         strength_tr = result_strength_tr[0]["label"]
         label_dict_strength = {'LABEL_0': 'Strength: 0 (No-hate)', 'LABEL_1': 'Strength: 1 (Insult)', 'LABEL_2': 'Strength: 2 (Exclusion)',
                                'LABEL_3': 'Strength: 3 (Wishing harm)', 'LABEL_4': 'Strength: 4 (Threatening harm)'}  
         
         label_dict_sentiment = {'LABEL_0': 'Detection: No-hate βœ…', 'LABEL_1': 'Detection: Hate ❌', 'LABEL_2': 'Detection: Hate ❌',
                                 'LABEL_3': 'Detection: Hate ❌', 'LABEL_4': 'Detection: Hate ❌',}

         sentiment_tr = label_dict_sentiment[strength_tr]
         strength_tr = label_dict_strength[strength_tr]
         st.write(sentiment_tr)
         st.write(strength_tr)
         #st.write(sentiment_tr_test)  
         #st.success(sentiment_tr)
         #st.success(strength_tr)