Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Turkish | |
sentiment_pipeline_tr = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech") # "gritli/bert-sentiment-analyses-imdb" | |
strength_pipeline_tr = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech") # "gritli/bert-sentiment-analyses-imdb" | |
def write(): | |
st.markdown( | |
""" | |
# Hate Speech Detection in Turkish | |
""" | |
) | |
tr_input = st.text_area("Enter your text here:", height=50, key="tr_input") #height=30 | |
if st.button("Model prediction", key="tr_predict"): | |
st.write(" ") | |
with st.spinner('Generating predictions...'): | |
result_sentiment_tr = sentiment_pipeline_tr(tr_input) | |
sentiment_tr = result_sentiment_tr[0]["label"] | |
label_dict_sentiment = {'LABEL_1': 'Detection: Hate β', 'LABEL_0': 'Detection: Non-hate β '} #π« | |
sentiment_tr = label_dict_sentiment[sentiment_tr] | |
result_strength_tr = strength_pipeline_tr(tr_input) | |
strength_tr = result_strength_tr[0]["label"] | |
label_dict_strength = {'LABEL_0': 'Strength: 0', 'LABEL_1': 'Strength: 1', 'LABEL_2': 'Strength: 2','LABEL_3': 'Strength: 3', 'LABEL_4': 'Strength: 4'} #π« | |
strength_tr = label_dict_strength[strength_tr] | |
st.write(sentiment_tr) | |
st.write(strength_tr) | |
#st.success(sentiment_tr) | |
#st.success(strength_tr) | |