SoDehghan commited on
Commit
0d5c842
1 Parent(s): 32745ca

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -0
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import streamlit as st
3
+ import requests
4
+ import time
5
+ from transformers import pipeline
6
+ import os
7
+
8
+
9
+ # Set the page configuration
10
+ st.set_page_config(
11
+ page_title="Hate Speech Detection",
12
+ page_icon="📖", #":bar_chart:"
13
+ layout='centered'
14
+ )
15
+
16
+ #title = r"$\textsf{\small Hate Speech Detection}$"
17
+ #st.title(title)
18
+ #st.write("In this HuggingFace space you will be able to use our Hate Speech Detection model built at [VERİM - Center of Excellence in Data Analytics - Sabanci University](https://github.com/verimsu).")
19
+
20
+
21
+ # Turkish
22
+ sentiment_pipeline_tr = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech") # "gritli/bert-sentiment-analyses-imdb"
23
+ header_tr = r"$\textsf{\scriptsize HSD in Turkish}$"
24
+ st.subheader(header_tr)
25
+
26
+ tr_input = st.text_area("Enter your text here:", height=50, key="tr_input") #height=30
27
+ if st.button("Click for predictions!", key="tr_predict"):
28
+ with st.spinner('Generating predictions...'):
29
+ result_tr = sentiment_pipeline_tr(tr_input)
30
+ sentiment_tr = result_tr[0]["label"]
31
+ label_dict = {'LABEL_1': 'Hate ❌', 'LABEL_0': 'Non-hate ✅'} #🚫
32
+ sentiment_tr = label_dict[sentiment_tr]
33
+ st.write(f"Detection: {sentiment_tr}")
34
+
35
+
36
+ # Arabic
37
+ sentiment_pipeline_ar = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech")
38
+ header_ar = r"$\textsf{\scriptsize HSD in Arabic}$"
39
+ st.subheader(header_ar)
40
+
41
+ ar_input = st.text_area("Enter your text here:", height=50 , key="ar_input")
42
+ if st.button("Click for predictions!", key="ar_predict"):
43
+ with st.spinner('Generating predictions...'):
44
+ result_ar = sentiment_pipeline_ar(ar_input)
45
+ sentiment_ar = result_ar[0]["label"]
46
+ label_dict = {'LABEL_1': 'Hate ❌', 'LABEL_0': 'Non-hate ✅'}
47
+ sentiment_ar = label_dict[sentiment_ar]
48
+ st.write(f"Detection: {sentiment_ar}")
49
+
50
+
51
+ st.sidebar.title("Hate Speech Detection")
52
+ #st.sidebar.write("In this HuggingFace space you can use Hate Speech Detection model built at [VERİM - Center of Excellence in Data Analytics - Sabanci University](https://github.com/verimsu).")
53
+ st.sidebar.write('This tool is developed in the context of the EU project "Utilizing Digital Technology for Social Cohesion, Positive Messaging and Peace by Boosting Collaboration, Exchange and Solidarity" (EuropeAid/170389/DD/ACT/Multi) by [Sabanci University Center of Excellence in Data Analytics](https://github.com/verimsu).')
54
+
55
+ iface = gr.Interface(fn=[translator_fn_baseline, translator_fn_roberta],
56
+ inputs=gr.inputs.Textbox(lines=2, placeholder=None, label="Your Danish text goes here."),
57
+ outputs=['text'], # a list should match the number of values returned by fn to have one input and 2 putputs.
58
+ description = "This App translates text from Danish to the English language.",
59
+ title = "Danish to English Translator App",
60
+ theme = "peach")
61
+
62
+ iface.launch(share=False, enable_queue=True)