Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import streamlit as st
|
3 |
+
import requests
|
4 |
+
import time
|
5 |
+
from transformers import pipeline
|
6 |
+
import os
|
7 |
+
|
8 |
+
|
9 |
+
# Set the page configuration
|
10 |
+
st.set_page_config(
|
11 |
+
page_title="Hate Speech Detection",
|
12 |
+
page_icon="📖", #":bar_chart:"
|
13 |
+
layout='centered'
|
14 |
+
)
|
15 |
+
|
16 |
+
#title = r"$\textsf{\small Hate Speech Detection}$"
|
17 |
+
#st.title(title)
|
18 |
+
#st.write("In this HuggingFace space you will be able to use our Hate Speech Detection model built at [VERİM - Center of Excellence in Data Analytics - Sabanci University](https://github.com/verimsu).")
|
19 |
+
|
20 |
+
|
21 |
+
# Turkish
|
22 |
+
sentiment_pipeline_tr = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech") # "gritli/bert-sentiment-analyses-imdb"
|
23 |
+
header_tr = r"$\textsf{\scriptsize HSD in Turkish}$"
|
24 |
+
st.subheader(header_tr)
|
25 |
+
|
26 |
+
tr_input = st.text_area("Enter your text here:", height=50, key="tr_input") #height=30
|
27 |
+
if st.button("Click for predictions!", key="tr_predict"):
|
28 |
+
with st.spinner('Generating predictions...'):
|
29 |
+
result_tr = sentiment_pipeline_tr(tr_input)
|
30 |
+
sentiment_tr = result_tr[0]["label"]
|
31 |
+
label_dict = {'LABEL_1': 'Hate ❌', 'LABEL_0': 'Non-hate ✅'} #🚫
|
32 |
+
sentiment_tr = label_dict[sentiment_tr]
|
33 |
+
st.write(f"Detection: {sentiment_tr}")
|
34 |
+
|
35 |
+
|
36 |
+
# Arabic
|
37 |
+
sentiment_pipeline_ar = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech")
|
38 |
+
header_ar = r"$\textsf{\scriptsize HSD in Arabic}$"
|
39 |
+
st.subheader(header_ar)
|
40 |
+
|
41 |
+
ar_input = st.text_area("Enter your text here:", height=50 , key="ar_input")
|
42 |
+
if st.button("Click for predictions!", key="ar_predict"):
|
43 |
+
with st.spinner('Generating predictions...'):
|
44 |
+
result_ar = sentiment_pipeline_ar(ar_input)
|
45 |
+
sentiment_ar = result_ar[0]["label"]
|
46 |
+
label_dict = {'LABEL_1': 'Hate ❌', 'LABEL_0': 'Non-hate ✅'}
|
47 |
+
sentiment_ar = label_dict[sentiment_ar]
|
48 |
+
st.write(f"Detection: {sentiment_ar}")
|
49 |
+
|
50 |
+
|
51 |
+
st.sidebar.title("Hate Speech Detection")
|
52 |
+
#st.sidebar.write("In this HuggingFace space you can use Hate Speech Detection model built at [VERİM - Center of Excellence in Data Analytics - Sabanci University](https://github.com/verimsu).")
|
53 |
+
st.sidebar.write('This tool is developed in the context of the EU project "Utilizing Digital Technology for Social Cohesion, Positive Messaging and Peace by Boosting Collaboration, Exchange and Solidarity" (EuropeAid/170389/DD/ACT/Multi) by [Sabanci University Center of Excellence in Data Analytics](https://github.com/verimsu).')
|
54 |
+
|
55 |
+
iface = gr.Interface(fn=[translator_fn_baseline, translator_fn_roberta],
|
56 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder=None, label="Your Danish text goes here."),
|
57 |
+
outputs=['text'], # a list should match the number of values returned by fn to have one input and 2 putputs.
|
58 |
+
description = "This App translates text from Danish to the English language.",
|
59 |
+
title = "Danish to English Translator App",
|
60 |
+
theme = "peach")
|
61 |
+
|
62 |
+
iface.launch(share=False, enable_queue=True)
|