Spaces:
Sleeping
Sleeping
Rename app.py to ap.py
Browse files- app.py β ap.py +5 -3
app.py β ap.py
RENAMED
@@ -26,16 +26,17 @@ st.subheader(header_tr)
|
|
26 |
tr_input = st.text_area("Enter your text here:", height=50, key="tr_input") #height=30
|
27 |
if st.button("Click for predictions!", key="tr_predict"):
|
28 |
with st.spinner('Generating predictions...'):
|
|
|
29 |
result_tr = sentiment_pipeline_tr(tr_input)
|
30 |
sentiment_tr = result_tr[0]["label"]
|
31 |
-
label_dict = {'LABEL_1': 'Hate β
|
32 |
sentiment_tr = label_dict[sentiment_tr]
|
33 |
|
34 |
strength_tr = " "
|
35 |
st.write(f"Detection: {sentiment_tr}, Strength: {strength_tr}")
|
36 |
|
37 |
|
38 |
-
st.write(
|
39 |
# Arabic
|
40 |
sentiment_pipeline_ar = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech")
|
41 |
header_ar = r"$\textsf{\scriptsize HSD in Arabic}$"
|
@@ -44,9 +45,10 @@ st.subheader(header_ar)
|
|
44 |
ar_input = st.text_area("Enter your text here:", height=50 , key="ar_input")
|
45 |
if st.button("Click for predictions!", key="ar_predict"):
|
46 |
with st.spinner('Generating predictions...'):
|
|
|
47 |
result_ar = sentiment_pipeline_ar(ar_input)
|
48 |
sentiment_ar = result_ar[0]["label"]
|
49 |
-
label_dict = {'LABEL_1': 'Hate β
|
50 |
sentiment_ar = label_dict[sentiment_ar]
|
51 |
|
52 |
strength_tr = " "
|
|
|
26 |
tr_input = st.text_area("Enter your text here:", height=50, key="tr_input") #height=30
|
27 |
if st.button("Click for predictions!", key="tr_predict"):
|
28 |
with st.spinner('Generating predictions...'):
|
29 |
+
st.write(" ")
|
30 |
result_tr = sentiment_pipeline_tr(tr_input)
|
31 |
sentiment_tr = result_tr[0]["label"]
|
32 |
+
label_dict = {'LABEL_1': 'Hate β ', 'LABEL_0': 'Non-hate β
'} #π«
|
33 |
sentiment_tr = label_dict[sentiment_tr]
|
34 |
|
35 |
strength_tr = " "
|
36 |
st.write(f"Detection: {sentiment_tr}, Strength: {strength_tr}")
|
37 |
|
38 |
|
39 |
+
st.write(" ")
|
40 |
# Arabic
|
41 |
sentiment_pipeline_ar = pipeline(task = "text-classification", model = "SoDehghan/BERTurk-hate-speech")
|
42 |
header_ar = r"$\textsf{\scriptsize HSD in Arabic}$"
|
|
|
45 |
ar_input = st.text_area("Enter your text here:", height=50 , key="ar_input")
|
46 |
if st.button("Click for predictions!", key="ar_predict"):
|
47 |
with st.spinner('Generating predictions...'):
|
48 |
+
st.write(" ")
|
49 |
result_ar = sentiment_pipeline_ar(ar_input)
|
50 |
sentiment_ar = result_ar[0]["label"]
|
51 |
+
label_dict = {'LABEL_1': 'Hate β ', 'LABEL_0': 'Non-hate β
'}
|
52 |
sentiment_ar = label_dict[sentiment_ar]
|
53 |
|
54 |
strength_tr = " "
|