File size: 1,279 Bytes
2f4f974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset

# Model Pre-trained
MODEL_NAME = "indobenchmark/indobert-base-p2"

# Load Dataset
dataset = load_dataset("csv", data_files="dataset.csv")

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

def preprocess(data):
    return tokenizer(data['pertanyaan'], padding="max_length", truncation=True)

# Preprocessing
dataset = dataset.map(preprocess, batched=True)
dataset = dataset.rename_column("jawaban", "labels")
dataset.set_format("torch", columns=["input_ids", "attention_mask", "labels"])

# Load Model
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=2)

# Training Arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    num_train_epochs=3,
    save_total_limit=2
)

# Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset['train'],
    eval_dataset=dataset['validation']
)

# Train Model
trainer.train()

# Save Model
model.save_pretrained("./fine_tuned_model")
print("Model telah dilatih ulang dan disimpan ke './fine_tuned_model'.")