images_dir = "images" import io from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info from PIL import Image import torch torch.cuda.empty_cache() from fastapi import FastAPI, File, Form,UploadFile,HTTPException app=FastAPI() def run_model(image,text_input): torch.cuda.empty_cache() model_id= "Qwen/Qwen2-VL-7B-Instruct-AWQ" model = Qwen2VLForConditionalGeneration.from_pretrained( model_id , torch_dtype=torch.float16, device_map="cuda:0" ) min_pixels = 256*28*28 max_pixels = 1280*28*28 processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct-AWQ", min_pixels=min_pixels, max_pixels=max_pixels) torch.cuda.empty_cache() image_path = Image.open(image) print(image_path) messages = [ { "role": "user", "content": [ { "type": "image", "image": image_path, }, {"type": "text", "text": text_input}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output torch.cuda.empty_cache() generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] @app.post("/call_qwen_model") async def call_model(file: UploadFile = File(...),json_str: str = Form(...)): try: request_object_content = await file.read() img = io.BytesIO(request_object_content) output = run_model(img, json_str) return {"output": output} except Exception as e : raise HTTPException (f"Error: {e}")