File size: 3,358 Bytes
f3c5846
ec45def
 
 
 
 
 
dc99051
ec45def
 
d8c0142
ec45def
f3c5846
ec45def
 
 
 
 
 
 
 
 
 
d8c0142
ec45def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c0142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec45def
 
 
 
 
 
 
 
 
 
 
 
d8c0142
 
ec45def
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
import torch
import os
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset, Audio
import numpy as np
from speechbrain.inference import EncoderClassifier

# Load models and processor
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("Solo448/Speect5-common-voice-Hindi")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")

# Load speaker encoder
device = "cuda" if torch.cuda.is_available() else "cpu"
speaker_model = EncoderClassifier.from_hparams(
    source="speechbrain/spkrec-xvect-voxceleb",
    run_opts={"device": device},
    savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb")
)

# Load a sample from the dataset for speaker embedding
try:
    dataset = load_dataset("mozilla-foundation/common_voice_17_0", "hi", split="validated", trust_remote_code=True)
    dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
    sample = dataset[0]
    speaker_embedding = create_speaker_embedding(sample['audio']['array'])
except Exception as e:
    print(f"Error loading dataset: {e}")
    # Use a random speaker embedding as fallback
    speaker_embedding = torch.randn(1, 512)

def create_speaker_embedding(waveform):
    with torch.no_grad():
        speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
        speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
        speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
    return speaker_embeddings

def text_to_speech(text):
    # Clean up text
    replacements = [
    ("अ", "a"),
    ("आ", "aa"),
    ("इ", "i"),
    ("ई", "ee"),
    ("उ", "u"),
    ("ऋ", "ri"),
    ("ए", "ae"),
    ("ऐ", "ai"),
    ("ऑ", "au"),
    ("ओ", "o"),
    ("औ", "au"),
    ("क", "k"),
    ("ख", "kh"),
    ("ग", "g"),
    ("घ", "gh"),
    ("च", "ch"),
    ("छ", "chh"),
    ("ज", "j"),
    ("झ", "jh"),
    ("ञ", "gna"),
    ("ट", "t"),
    ("ठ", "th"),
    ("ड", "d"),
    ("ढ", "dh"),
    ("ण", "nr"),
    ("त", "t"),
    ("थ", "th"),
    ("द", "d"),
    ("ध", "dh"),
    ("न", "n"),
    ("प", "p"),
    ("फ", "ph"),
    ("ब", "b"),
    ("भ", "bh"),
    ("म", "m"),
    ("य", "ya"),
    ("र", "r"),
    ("ल", "l"),
    ("व", "w"),
    ("श", "sha"),
    ("ष", "sh"),
    ("स", "s"),
    ("ह", "ha"),
    ("़", "ng"),
    ("्", ""),
    ("ऽ", ""),
    ("ा", "a"),
    ("ि", "i"),
    ("ी", "ee"),
    ("ु", "u"),
    ("ॅ", "n"),
    ("े", "e"),
    ("ै", "oi"),
    ("ो", "o"),
    ("ौ", "ou"),
    ("ॅ", "n"),
    ("ॉ", "r"),
    ("ू", "uh"),
    ("ृ", "ri"),
    ("ं", "n"),
    ("क़", "q"),
    ("ज़", "z"),
    ("ड़", "r"),
    ("ढ़", "rh"),
    ("फ़", "f"),
    ("|", ".")
    ]
    for src, dst in replacements:
        text = text.replace(src, dst)

    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
    return (16000, speech.numpy())

iface = gr.Interface(
    fn=text_to_speech,
    inputs="text",
    outputs="audio",
    title="Hindi Text-to-Speech",
    description="Enter hindi text to convert to speech"
)

iface.launch()