Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import os | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
from datasets import load_dataset, Audio | |
import numpy as np | |
from speechbrain.inference import EncoderClassifier | |
# Load models and processor | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("Solo448/Speect5-common-voice-Hindi") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
# Load speaker encoder | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
speaker_model = EncoderClassifier.from_hparams( | |
source="speechbrain/spkrec-xvect-voxceleb", | |
run_opts={"device": device}, | |
savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb") | |
) | |
# Load a sample from the dataset for speaker embedding | |
try: | |
dataset = load_dataset("mozilla-foundation/common_voice_17_0", "hi", split="validated", trust_remote_code=True) | |
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) | |
sample = dataset[0] | |
speaker_embedding = create_speaker_embedding(sample['audio']['array']) | |
except Exception as e: | |
print(f"Error loading dataset: {e}") | |
# Use a random speaker embedding as fallback | |
speaker_embedding = torch.randn(1, 512) | |
def create_speaker_embedding(waveform): | |
with torch.no_grad(): | |
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform)) | |
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) | |
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy() | |
return speaker_embeddings | |
def text_to_speech(text): | |
# Clean up text | |
replacements = [ | |
("अ", "a"), | |
("आ", "aa"), | |
("इ", "i"), | |
("ई", "ee"), | |
("उ", "u"), | |
("ऋ", "ri"), | |
("ए", "ae"), | |
("ऐ", "ai"), | |
("ऑ", "au"), | |
("ओ", "o"), | |
("औ", "au"), | |
("क", "k"), | |
("ख", "kh"), | |
("ग", "g"), | |
("घ", "gh"), | |
("च", "ch"), | |
("छ", "chh"), | |
("ज", "j"), | |
("झ", "jh"), | |
("ञ", "gna"), | |
("ट", "t"), | |
("ठ", "th"), | |
("ड", "d"), | |
("ढ", "dh"), | |
("ण", "nr"), | |
("त", "t"), | |
("थ", "th"), | |
("द", "d"), | |
("ध", "dh"), | |
("न", "n"), | |
("प", "p"), | |
("फ", "ph"), | |
("ब", "b"), | |
("भ", "bh"), | |
("म", "m"), | |
("य", "ya"), | |
("र", "r"), | |
("ल", "l"), | |
("व", "w"), | |
("श", "sha"), | |
("ष", "sh"), | |
("स", "s"), | |
("ह", "ha"), | |
("़", "ng"), | |
("्", ""), | |
("ऽ", ""), | |
("ा", "a"), | |
("ि", "i"), | |
("ी", "ee"), | |
("ु", "u"), | |
("ॅ", "n"), | |
("े", "e"), | |
("ै", "oi"), | |
("ो", "o"), | |
("ौ", "ou"), | |
("ॅ", "n"), | |
("ॉ", "r"), | |
("ू", "uh"), | |
("ृ", "ri"), | |
("ं", "n"), | |
("क़", "q"), | |
("ज़", "z"), | |
("ड़", "r"), | |
("ढ़", "rh"), | |
("फ़", "f"), | |
("|", ".") | |
] | |
for src, dst in replacements: | |
text = text.replace(src, dst) | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder) | |
return (16000, speech.numpy()) | |
iface = gr.Interface( | |
fn=text_to_speech, | |
inputs="text", | |
outputs="audio", | |
title="Hindi Text-to-Speech", | |
description="Enter hindi text to convert to speech" | |
) | |
iface.launch() |