Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Predict with test data (first 5 rows) | |
model_ckpt = "GenzNepal/mt5-summarize-nepali" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
t5_tokenizer = AutoTokenizer.from_pretrained(model_ckpt) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_ckpt).to(device) | |
def summarize(text): | |
inputs = t5_tokenizer(text, return_tensors="pt", max_length=1024, padding= "max_length", truncation=True, add_special_tokens=True) | |
generation = model.generate( | |
input_ids = inputs['input_ids'].to(device), | |
attention_mask=inputs['attention_mask'].to(device), | |
num_beams=6, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
repetition_penalty=1.0, | |
min_length=100, | |
max_length=250, | |
length_penalty=2.0, | |
early_stopping=True | |
) | |
# # Convert id tokens to text | |
output = t5_tokenizer.decode(generation[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
return output | |
demo = gr.Interface( | |
fn=summarize, | |
inputs=gr.Textbox(placeholder="Enter news " , lines=5, max_lines=20, label="News"), | |
outputs=gr.Textbox(label="Generated Summary") | |
) | |
if __name__ == "__main__": | |
demo.launch() | |