Spaces:
Runtime error
Runtime error
Someshfengde
commited on
Commit
β’
2063d73
1
Parent(s):
ad36e03
Upload folder using huggingface_hub
Browse files- .github/workflows/update_space.yml +28 -0
- README.md +2 -8
- Visualized_base_en_v1.5.pth +3 -0
- app.py +221 -0
- packages.txt +1 -0
- requirements.txt +3 -0
.github/workflows/update_space.yml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Run Python script
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
build:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
|
12 |
+
steps:
|
13 |
+
- name: Checkout
|
14 |
+
uses: actions/checkout@v2
|
15 |
+
|
16 |
+
- name: Set up Python
|
17 |
+
uses: actions/setup-python@v2
|
18 |
+
with:
|
19 |
+
python-version: '3.9'
|
20 |
+
|
21 |
+
- name: Install Gradio
|
22 |
+
run: python -m pip install gradio
|
23 |
+
|
24 |
+
- name: Log in to Hugging Face
|
25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
26 |
+
|
27 |
+
- name: Deploy to Spaces
|
28 |
+
run: gradio deploy
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Visualized_BGE_demo
|
3 |
+
app_file: app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 4.44.0
|
|
|
|
|
6 |
---
|
|
|
|
Visualized_base_en_v1.5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07e58cf70ee6962530490ef1ac5b632e7e0153ba8c7ed49d55e0f41ec97bf6a6
|
3 |
+
size 392860018
|
app.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from FlagEmbedding.visual.modeling import Visualized_BGE
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from tqdm import tqdm
|
9 |
+
from pdf2image import convert_from_path
|
10 |
+
import numpy as np
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import io
|
13 |
+
|
14 |
+
# Initialize the Visualized-BGE model
|
15 |
+
def load_bge_model(model_name: str, model_weight_path: str):
|
16 |
+
model = Visualized_BGE(model_name_bge=model_name, model_weight=model_weight_path)
|
17 |
+
model.eval()
|
18 |
+
return model
|
19 |
+
|
20 |
+
# Load the BGE model (ensure you have downloaded the weights and provide the correct path)
|
21 |
+
model_name = "BAAI/bge-base-en-v1.5" # or "BAAI/bge-m3" for multilingual
|
22 |
+
model_weight_path ="./Visualized_base_en_v1.5.pth"
|
23 |
+
model = load_bge_model(model_name, model_weight_path)
|
24 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
25 |
+
model.to(device)
|
26 |
+
|
27 |
+
# Function to encode images
|
28 |
+
import tempfile
|
29 |
+
import os
|
30 |
+
|
31 |
+
def encode_image(image_input):
|
32 |
+
"""
|
33 |
+
Encodes an image for retrieval.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
image_input: Can be a file path (str), a NumPy array, or a PIL Image.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
torch.Tensor: The image embedding.
|
40 |
+
"""
|
41 |
+
delete_temp_file = False
|
42 |
+
if isinstance(image_input, str):
|
43 |
+
image_path = image_input
|
44 |
+
else:
|
45 |
+
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_file:
|
46 |
+
if isinstance(image_input, np.ndarray):
|
47 |
+
image = Image.fromarray(image_input)
|
48 |
+
elif isinstance(image_input, Image.Image):
|
49 |
+
image = image_input
|
50 |
+
else:
|
51 |
+
raise ValueError("Unsupported image input type for image encoding.")
|
52 |
+
|
53 |
+
image.save(tmp_file.name)
|
54 |
+
image_path = tmp_file.name
|
55 |
+
delete_temp_file = True # Mark that we need to delete this temp file
|
56 |
+
|
57 |
+
try:
|
58 |
+
with torch.no_grad():
|
59 |
+
embed = model.encode(image=image_path)
|
60 |
+
embed = embed.squeeze(0)
|
61 |
+
finally:
|
62 |
+
if delete_temp_file:
|
63 |
+
# Remove the temporary file
|
64 |
+
os.remove(image_path)
|
65 |
+
|
66 |
+
return embed.cpu()
|
67 |
+
|
68 |
+
|
69 |
+
# Function to encode text
|
70 |
+
def encode_text(text):
|
71 |
+
with torch.no_grad():
|
72 |
+
embed = model.encode(text=text) # Assuming encode returns [1, D]
|
73 |
+
embed = embed.squeeze(0) # Remove the batch dimension if present
|
74 |
+
return embed.cpu()
|
75 |
+
|
76 |
+
# Function to index uploaded files (PDFs or images)
|
77 |
+
def index_files(files, embeddings_state, metadata_state):
|
78 |
+
print("Indexing files...")
|
79 |
+
embeddings = []
|
80 |
+
metadata = []
|
81 |
+
|
82 |
+
for file in files:
|
83 |
+
if file.name.lower().endswith('.pdf'):
|
84 |
+
images = convert_from_path(file.name, thread_count=4)
|
85 |
+
for idx, img in enumerate(images):
|
86 |
+
img_path = f"{file.name}_page_{idx}.png"
|
87 |
+
img.save(img_path)
|
88 |
+
embed = encode_image(img_path)
|
89 |
+
print(f"Embedding shape after encoding image: {embed.shape}") # Should be [768]
|
90 |
+
embeddings.append(embed)
|
91 |
+
metadata.append({"type": "image", "path": img_path, "info": f"Page {idx}"})
|
92 |
+
elif file.name.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):
|
93 |
+
img_path = file.name
|
94 |
+
embed = encode_image(img_path)
|
95 |
+
print(f"Embedding shape after encoding image: {embed.shape}") # Should be [768]
|
96 |
+
embeddings.append(embed)
|
97 |
+
metadata.append({"type": "image", "path": img_path, "info": "Uploaded Image"})
|
98 |
+
else:
|
99 |
+
raise gr.Error("Unsupported file type. Please upload PDFs or image files.")
|
100 |
+
|
101 |
+
embeddings = torch.stack(embeddings).to(device) # Should result in shape [N, 768]
|
102 |
+
print(f"Stacked embeddings shape: {embeddings.shape}")
|
103 |
+
embeddings_state = embeddings
|
104 |
+
metadata_state = metadata
|
105 |
+
return f"Indexed {len(embeddings)} items.", embeddings_state, metadata_state
|
106 |
+
|
107 |
+
def search(query_text, query_image, k, embeddings_state, metadata_state):
|
108 |
+
embeddings = embeddings_state
|
109 |
+
metadata = metadata_state
|
110 |
+
|
111 |
+
if embeddings is None or embeddings.size(0) == 0:
|
112 |
+
return "No embeddings indexed. Please upload and index files first.", []
|
113 |
+
|
114 |
+
query_emb = None
|
115 |
+
|
116 |
+
if query_text and query_image:
|
117 |
+
gr.warning("Please provide either a text query or an image query, not both. Using text query by default.")
|
118 |
+
# text_emb = encode_text(query_text) # [D]
|
119 |
+
# image_emb = encode_image(query_image) # [D]
|
120 |
+
# query_emb = (text_emb + image_emb) / 2 # [D]
|
121 |
+
# print("Combined text and image embeddings for query.")
|
122 |
+
query_emb = encode_text(query_text) # [D]
|
123 |
+
if query_text:
|
124 |
+
query_emb = encode_text(query_text) # [D]
|
125 |
+
print("Encoded text query.")
|
126 |
+
elif query_image is not None :
|
127 |
+
print(query_image)
|
128 |
+
query_emb = encode_image(query_image) # [D]
|
129 |
+
print("Encoded image query.")
|
130 |
+
else:
|
131 |
+
return "Please provide at least a text query or an image query.", []
|
132 |
+
|
133 |
+
# Ensure query_emb has shape [1, D]
|
134 |
+
if query_emb.dim() == 1:
|
135 |
+
query_emb = query_emb.unsqueeze(0) # [1, D]
|
136 |
+
|
137 |
+
# Normalize embeddings for cosine similarity
|
138 |
+
query_emb = F.normalize(query_emb.to(device), p=2, dim=1) # [1, D]
|
139 |
+
indexed_emb = F.normalize(embeddings.to(device), p=2, dim=1) # [N, D]
|
140 |
+
|
141 |
+
print(f"Query embedding shape: {query_emb.shape}") # Should be [1, 768]
|
142 |
+
print(f"Indexed embeddings shape: {indexed_emb.shape}") # Should be [N, 768]
|
143 |
+
|
144 |
+
# Compute cosine similarities
|
145 |
+
similarities = torch.matmul(query_emb, indexed_emb.T).squeeze(0) # [N]
|
146 |
+
print(f"Similarities shape: {similarities.shape}")
|
147 |
+
|
148 |
+
# Get top-k results
|
149 |
+
topk = torch.topk(similarities, k)
|
150 |
+
topk_indices = topk.indices.cpu().numpy()
|
151 |
+
topk_scores = topk.values.cpu().numpy()
|
152 |
+
|
153 |
+
print(f"Top-{k} indices: {topk_indices}")
|
154 |
+
print(f"Top-{k} scores: {topk_scores}")
|
155 |
+
|
156 |
+
results = []
|
157 |
+
for idx, score in zip(topk_indices, topk_scores):
|
158 |
+
item = metadata[idx]
|
159 |
+
if item["type"] == "image":
|
160 |
+
# Load image from path
|
161 |
+
img = Image.open(item["path"]).convert("RGB")
|
162 |
+
results.append((img, f"Score: {score:.4f} | {item['info']}"))
|
163 |
+
else:
|
164 |
+
# Handle text data if applicable
|
165 |
+
results.append((item["data"], f"Score: {score:.4f} | {item['info']}"))
|
166 |
+
|
167 |
+
return results
|
168 |
+
|
169 |
+
# Gradio Interface
|
170 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
171 |
+
gr.Markdown("# Visualized-BGE: Multimodal Retrieval Demo π")
|
172 |
+
gr.Markdown("""
|
173 |
+
Upload PDF or image files to index them. Then, perform searches using text, images, or both to retrieve the most relevant items.
|
174 |
+
|
175 |
+
**Note:** Ensure that you have indexed the files before performing a search.
|
176 |
+
""")
|
177 |
+
|
178 |
+
# Initialize state variables
|
179 |
+
embeddings_state = gr.State(None)
|
180 |
+
metadata_state = gr.State(None)
|
181 |
+
|
182 |
+
with gr.Row():
|
183 |
+
with gr.Column(scale=2):
|
184 |
+
gr.Markdown("## 1οΈβ£ Upload and Index Files")
|
185 |
+
file_input = gr.File(file_types=["pdf", "png", "jpg", "jpeg", "bmp", "gif"], file_count="multiple", label="Upload Files")
|
186 |
+
index_button = gr.Button("π Index Files")
|
187 |
+
index_status = gr.Textbox("No files indexed yet.", label="Indexing Status")
|
188 |
+
|
189 |
+
with gr.Column(scale=3):
|
190 |
+
gr.Markdown("## 2οΈβ£ Perform Search")
|
191 |
+
with gr.Row():
|
192 |
+
query_text = gr.Textbox(placeholder="Enter your text query here...", label="Text Query")
|
193 |
+
query_image = gr.Image(label="Image Query (Optional)")
|
194 |
+
k = gr.Slider(minimum=1, maximum=20, step=1, label="Number of Results", value=5)
|
195 |
+
search_button = gr.Button("π Search")
|
196 |
+
output_gallery = gr.Gallery(label="Retrieved Results", show_label=True, columns=2)
|
197 |
+
|
198 |
+
# Define button actions
|
199 |
+
index_button.click(
|
200 |
+
index_files,
|
201 |
+
inputs=[file_input, embeddings_state, metadata_state],
|
202 |
+
outputs=[index_status, embeddings_state, metadata_state]
|
203 |
+
)
|
204 |
+
search_button.click(
|
205 |
+
search,
|
206 |
+
inputs=[query_text, query_image, k, embeddings_state, metadata_state],
|
207 |
+
outputs=output_gallery
|
208 |
+
)
|
209 |
+
|
210 |
+
gr.Markdown("""
|
211 |
+
---
|
212 |
+
## About
|
213 |
+
This demo uses the **Visualized-BGE** model for efficient multimodal retrieval tasks. Upload your documents or images, index them, and perform searches using text, images, or a combination of both.
|
214 |
+
|
215 |
+
**References:**
|
216 |
+
- [Visualized-BGE Paper](https://arxiv.org/abs/2406.04292)
|
217 |
+
- [FlagEmbedding GitHub](https://github.com/FlagOpen/FlagEmbedding)
|
218 |
+
""")
|
219 |
+
|
220 |
+
if __name__ == "__main__":
|
221 |
+
demo.launch(debug=True, share=True)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
poppler-utils
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
pdf2image
|
2 |
+
gradio
|
3 |
+
FlagEmbedding
|