Spaces:
Running
Running
# Copyright (c) 2023, Tri Dao, Albert Gu. | |
import argparse | |
import time | |
import json | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel | |
parser = argparse.ArgumentParser(description="Generation benchmarking") | |
parser.add_argument("--model-name", type=str, default="state-spaces/mamba-130m") | |
parser.add_argument("--prompt", type=str, default=None) | |
parser.add_argument("--promptlen", type=int, default=100) | |
parser.add_argument("--genlen", type=int, default=100) | |
parser.add_argument("--temperature", type=float, default=1.0) | |
parser.add_argument("--topk", type=int, default=1) | |
parser.add_argument("--topp", type=float, default=1.0) | |
parser.add_argument("--minp", type=float, default=0.0) | |
parser.add_argument("--repetition-penalty", type=float, default=1.0) | |
parser.add_argument("--batch", type=int, default=1) | |
args = parser.parse_args() | |
repeats = 3 | |
device = "cuda" | |
dtype = torch.float16 | |
print(f"Loading model {args.model_name}") | |
is_mamba = args.model_name.startswith("state-spaces/mamba") or args.model_name.startswith("state-spaces/transformerpp") | |
if is_mamba: | |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") | |
model = MambaLMHeadModel.from_pretrained(args.model_name, device=device, dtype=dtype) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(args.model_name) | |
model = AutoModelForCausalLM.from_pretrained(args.model_name, device_map={"": device}, torch_dtype=dtype) | |
model.eval() | |
print(f"Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") | |
torch.random.manual_seed(0) | |
if args.prompt is None: | |
input_ids = torch.randint(1, 1000, (args.batch, args.promptlen), dtype=torch.long, device="cuda") | |
attn_mask = torch.ones_like(input_ids, dtype=torch.long, device="cuda") | |
else: | |
tokens = tokenizer(args.prompt, return_tensors="pt") | |
input_ids = tokens.input_ids.to(device=device) | |
attn_mask = tokens.attention_mask.to(device=device) | |
max_length = input_ids.shape[1] + args.genlen | |
if is_mamba: | |
fn = lambda: model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
cg=True, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=False, | |
temperature=args.temperature, | |
top_k=args.topk, | |
top_p=args.topp, | |
min_p=args.minp, | |
repetition_penalty=args.repetition_penalty, | |
) | |
else: | |
fn = lambda: model.generate( | |
input_ids=input_ids, | |
attention_mask=attn_mask, | |
max_length=max_length, | |
return_dict_in_generate=True, | |
pad_token_id=tokenizer.eos_token_id, | |
do_sample=True, | |
temperature=args.temperature, | |
top_k=args.topk, | |
top_p=args.topp, | |
repetition_penalty=args.repetition_penalty, | |
) | |
out = fn() | |
if args.prompt is not None: | |
print(tokenizer.batch_decode(out.sequences.tolist())) | |
torch.cuda.synchronize() | |
start = time.time() | |
for _ in range(repeats): | |
fn() | |
torch.cuda.synchronize() | |
print(f"Prompt length: {len(input_ids[0])}, generation length: {len(out.sequences[0]) - len(input_ids[0])}") | |
print(f"{args.model_name} prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms") | |