Spaces:
Sleeping
Sleeping
/****************************************************************************** | |
* Copyright (c) 2024, Tri Dao. | |
******************************************************************************/ | |
namespace cub = hipcub; | |
template<int kNThreads_, int kWidth_, bool kSiluAct_, bool kIsVecLoad_, typename input_t_, typename weight_t_> | |
struct Causal_conv1d_bwd_kernel_traits { | |
using input_t = input_t_; | |
using weight_t = weight_t_; | |
static constexpr int kNThreads = kNThreads_; | |
static constexpr int kWidth = kWidth_; | |
static constexpr bool kSiluAct = kSiluAct_; | |
static constexpr int kNBytes = sizeof(input_t); | |
static_assert(kNBytes == 2 || kNBytes == 4); | |
static constexpr int kNElts = kNBytes == 4 ? 4 : 8; | |
static_assert(kWidth <= kNElts); | |
// It's possible that we need to do 2 rounds of exchange if input_t is 16 bits | |
// (since then we'd have 8 values of float, and each round we can exchange 4 floats). | |
static constexpr int kNExchangeRounds = sizeof(float) / sizeof(input_t); | |
static constexpr bool kIsVecLoad = kIsVecLoad_; | |
using vec_t = typename BytesToType<kNBytes * kNElts>::Type; | |
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>; | |
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>; | |
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>; | |
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>; | |
using BlockReduceFloatT = cub::BlockReduce<float, kNThreads>; | |
static constexpr int kSmemIOSize = kIsVecLoad | |
? 0 | |
: custom_max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)}); | |
static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts * (!kSiluAct ? 1 : kNExchangeRounds + 1); | |
static constexpr int kSmemSize = custom_max({kSmemExchangeSize, | |
int(sizeof(typename BlockReduceFloatT::TempStorage))}) + (kIsVecLoad ? 0 : kSmemIOSize); | |
}; | |
template<typename Ktraits> | |
__global__ __launch_bounds__(Ktraits::kNThreads) | |
void causal_conv1d_bwd_kernel(ConvParamsBwd params) { | |
constexpr int kWidth = Ktraits::kWidth; | |
constexpr int kNThreads = Ktraits::kNThreads; | |
constexpr bool kSiluAct = Ktraits::kSiluAct; | |
static constexpr int kNElts = Ktraits::kNElts; | |
constexpr int kNExchangeRounds = Ktraits::kNExchangeRounds; | |
static constexpr bool kIsVecLoad = Ktraits::kIsVecLoad; | |
using input_t = typename Ktraits::input_t; | |
using vec_t = typename Ktraits::vec_t; | |
using weight_t = typename Ktraits::weight_t; | |
// Shared memory. | |
extern __shared__ char smem_[]; | |
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_); | |
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_); | |
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_); | |
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_); | |
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize); | |
vec_t *smem_exchange_x = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize) + kNThreads * kNExchangeRounds; | |
auto& smem_reduce_float = *reinterpret_cast<typename Ktraits::BlockReduceFloatT::TempStorage*>(smem_ + Ktraits::kSmemIOSize); | |
const int tidx = threadIdx.x; | |
const int batch_id = blockIdx.x; | |
const int dim_id = blockIdx.y; | |
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride | |
+ dim_id * params.x_c_stride; | |
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + dim_id * params.weight_c_stride; | |
input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride | |
+ dim_id * params.dout_c_stride; | |
input_t *dx = reinterpret_cast<input_t *>(params.dx_ptr) + batch_id * params.dx_batch_stride | |
+ dim_id * params.dx_c_stride; | |
float *dweight = reinterpret_cast<float *>(params.dweight_ptr) + dim_id * params.dweight_c_stride; | |
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[dim_id]); | |
// Thread kNThreads - 1 will load the first elements of the next chunk so we initialize those to 0. | |
if (tidx == 0) { | |
if constexpr (!kSiluAct) { | |
input_t zeros[kNElts] = {0}; | |
smem_exchange[0] = reinterpret_cast<vec_t *>(zeros)[0]; | |
} else { | |
float zeros[kNElts] = {0}; | |
for (int r = 0; r < kNExchangeRounds; ++r) { | |
smem_exchange[r * kNThreads] = reinterpret_cast<vec_t *>(zeros)[r]; | |
} | |
} | |
} | |
float weight_vals[kWidth]; | |
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = weight[i * params.weight_width_stride]; } | |
float dweight_vals[kWidth] = {0}; | |
float dbias_val = 0; | |
constexpr int kChunkSize = kNThreads * kNElts; | |
const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize; | |
x += (n_chunks - 1) * kChunkSize; | |
dout += (n_chunks - 1) * kChunkSize; | |
dx += (n_chunks - 1) * kChunkSize; | |
for (int chunk = n_chunks - 1; chunk >= 0; --chunk) { | |
input_t x_vals_load[2 * kNElts] = {0}; | |
input_t dout_vals_load[2 * kNElts] = {0}; | |
if constexpr(kIsVecLoad) { | |
typename Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts); | |
typename Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(dout), *reinterpret_cast<vec_t (*)[1]>(&dout_vals_load[0]), (params.seqlen - chunk * kChunkSize) / kNElts); | |
} else { | |
__syncthreads(); | |
typename Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize); | |
__syncthreads(); | |
typename Ktraits::BlockLoadT(smem_load).Load(dout, *reinterpret_cast<input_t (*)[kNElts]>(&dout_vals_load[0]), params.seqlen - chunk * kChunkSize); | |
} | |
float dout_vals[2 * kNElts], x_vals[2 * kNElts]; | |
if constexpr (!kSiluAct) { | |
__syncthreads(); | |
// Thread 0 don't write yet, so that thread kNThreads - 1 can read | |
// the first elements of the next chunk. | |
if (tidx > 0) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(dout_vals_load)[0]; } | |
__syncthreads(); | |
reinterpret_cast<vec_t *>(dout_vals_load)[1] = smem_exchange[tidx < kNThreads - 1 ? tidx + 1 : 0]; | |
__syncthreads(); | |
// Now thread 0 can write the first elements of the current chunk. | |
if (tidx == 0) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(dout_vals_load)[0]; } | |
for (int i = 0; i < 2 * kNElts; ++i) { | |
dout_vals[i] = float(dout_vals_load[i]); | |
x_vals[i] = float(x_vals_load[i]); | |
} | |
} else { | |
if (tidx == 0 && chunk > 0) { | |
if constexpr(kIsVecLoad) { | |
reinterpret_cast<vec_t *>(x_vals_load)[0] = reinterpret_cast<vec_t *>(x)[-1]; | |
} else { | |
for (int i = 0; i < kNElts; ++i) { | |
if (chunk * kChunkSize + i < params.seqlen) { x_vals_load[i] = x[-kNElts + i]; } | |
} | |
} | |
} | |
__syncthreads(); | |
smem_exchange_x[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; | |
__syncthreads(); | |
if (tidx > 0) { reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange_x[tidx - 1]; } | |
for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); } | |
// Recompute the output | |
for (int i = 0; i < kNElts; ++i) { | |
float out_val = bias_val; | |
for (int w = 0; w < kWidth; ++w) { | |
out_val += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)]; | |
} | |
float out_sigmoid_val = 1.0f / (1.0f + expf(-out_val)); | |
dout_vals[i] = float(dout_vals_load[i]) * out_sigmoid_val | |
* (1.0f + out_val * (1.0f - out_sigmoid_val)); | |
} | |
// Exchange the dout_vals. It's possible that we need to do 2 rounds of exchange | |
// if input_t is 16 bits (since then we'd have 8 values of float) | |
__syncthreads(); | |
// Thread 0 don't write yet, so that thread kNThreads - 1 can read | |
// the first elements of the next chunk. | |
if (tidx > 0) { | |
for (int r = 0; r < kNExchangeRounds; ++r) { | |
smem_exchange[r * kNThreads + tidx] = reinterpret_cast<vec_t *>(dout_vals)[r]; | |
} | |
} | |
__syncthreads(); | |
for (int r = 0; r < kNExchangeRounds; ++r) { | |
reinterpret_cast<vec_t *>(dout_vals)[kNExchangeRounds + r] | |
= smem_exchange[r * kNThreads + (tidx < kNThreads - 1 ? tidx + 1 : 0)]; | |
} | |
__syncthreads(); | |
// Now thread 0 can write the first elements of the current chunk. | |
if (tidx == 0) { | |
for (int r = 0; r < kNExchangeRounds; ++r) { | |
smem_exchange[r * kNThreads + tidx] = reinterpret_cast<vec_t *>(dout_vals)[r]; | |
} | |
} | |
} | |
dout -= kChunkSize; | |
x -= kChunkSize; | |
for (int i = 0; i < kNElts; ++i) { dbias_val += dout_vals[i]; } | |
float dx_vals[kNElts] = {0}; | |
for (int i = 0; i < kNElts; ++i) { | |
for (int w = 0; w < kWidth; ++w) { | |
dx_vals[i] += weight_vals[w] * dout_vals[i + kWidth - w - 1]; | |
} | |
} | |
input_t dx_vals_store[kNElts]; | |
for (int i = 0; i < kNElts; ++i) { dx_vals_store[i] = dx_vals[i]; } | |
if constexpr(kIsVecLoad) { | |
typename Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(dx), reinterpret_cast<vec_t (&)[1]>(dx_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts); | |
} else { | |
typename Ktraits::BlockStoreT(smem_store).Store(dx, dx_vals_store, params.seqlen - chunk * kChunkSize); | |
} | |
dx -= kChunkSize; | |
for (int w = 0; w < kWidth; ++w) { | |
for (int i = 0; i < kNElts; ++i) { | |
dweight_vals[w] += x_vals[kNElts + i] * dout_vals[i + kWidth - w - 1]; | |
} | |
} | |
} | |
for (int w = 0; w < kWidth; ++w) { | |
__syncthreads(); | |
dweight_vals[w] = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dweight_vals[w]); | |
if (tidx == 0) { | |
atomicAdd(&reinterpret_cast<float *>(dweight)[w * params.dweight_width_stride], dweight_vals[w]); | |
} | |
} | |
if (params.bias_ptr != nullptr) { | |
__syncthreads(); | |
dbias_val = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dbias_val); | |
if (tidx == 0) { | |
atomicAdd(&reinterpret_cast<float *>(params.dbias_ptr)[dim_id], dbias_val); | |
} | |
} | |
} | |
template<int kNThreads, int kWidth, typename input_t, typename weight_t> | |
void causal_conv1d_bwd_launch(ConvParamsBwd ¶ms, cudaStream_t stream) { | |
static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8; | |
BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] { | |
BOOL_SWITCH(params.silu_activation, kSiluAct, [&] { | |
using Ktraits = Causal_conv1d_bwd_kernel_traits<kNThreads, kWidth, kSiluAct, kIsVecLoad, input_t, weight_t>; | |
constexpr int kSmemSize = Ktraits::kSmemSize; | |
dim3 grid(params.batch, params.dim); | |
auto kernel = &causal_conv1d_bwd_kernel<Ktraits>; | |
if (kSmemSize >= 48 * 1024) { | |
C10_CUDA_CHECK(cudaFuncSetAttribute( | |
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize)); | |
// There is a slight signature discrepancy in HIP and CUDA "FuncSetAttribute" function. | |
C10_CUDA_CHECK(cudaFuncSetAttribute( | |
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize)); | |
std::cerr << "Warning (causal_conv1d bwd launch): attempting to set maxDynamicSharedMemorySize on an AMD GPU which is currently a non-op (in ROCm versions <= 6.1). This might lead to undefined behavior. \n" << std::endl; | |
} | |
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params); | |
C10_CUDA_KERNEL_LAUNCH_CHECK(); | |
}); | |
}); | |
} | |
template<typename input_t, typename weight_t> | |
void causal_conv1d_bwd_cuda(ConvParamsBwd ¶ms, cudaStream_t stream) { | |
if (params.width == 2) { | |
causal_conv1d_bwd_launch<128, 2, input_t, weight_t>(params, stream); | |
} else if (params.width == 3) { | |
causal_conv1d_bwd_launch<128, 3, input_t, weight_t>(params, stream); | |
} else if (params.width == 4) { | |
causal_conv1d_bwd_launch<128, 4, input_t, weight_t>(params, stream); | |
} | |
} | |
template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kSiluAct_, bool kIsVecLoad_, typename input_t_, typename weight_t_> | |
struct Causal_conv1d_channellast_bwd_kernel_traits { | |
// The cache line is 128 bytes, and we try to read 16 bytes per thread. | |
// So we have 8 threads per "row", so 32 or 64 elements in the channel dimension. | |
// That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128 | |
// threads). Each each load is 16 x 32|64 elements in the L x C dimensions. | |
using input_t = input_t_; | |
using weight_t = weight_t_; | |
static constexpr bool kSiluAct = kSiluAct_; | |
static constexpr int kNThreads = kNThreads_; | |
static_assert(kNThreads % 32 == 0); | |
static constexpr int kNWarps = kNThreads / 32; | |
static constexpr int kWidth = kWidth_; | |
static constexpr int kChunkSizeL = kChunkSizeL_; | |
static constexpr int kNBytes = sizeof(input_t); | |
static_assert(kNBytes == 2 || kNBytes == 4); | |
static constexpr int kNElts = kNBytes == 4 ? 4 : 8; | |
static constexpr int kNEltsPerRow = 128 / kNBytes; | |
static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now | |
static_assert(kNThreadsPerRow * kNBytes * kNElts == 128); | |
static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now | |
static_assert(kNColsPerWarp * kNThreadsPerRow == 32); | |
static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps; | |
static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad; | |
static_assert(kNLoads * kNColsPerLoad == kChunkSizeL); | |
static constexpr bool kIsVecLoad = kIsVecLoad_; | |
using vec_t = typename BytesToType<kNBytes * kNElts>::Type; | |
// using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>; | |
// using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>; | |
// static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage), | |
// sizeof(typename BlockStoreT::TempStorage)}); | |
// static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes; | |
}; | |
template<typename Ktraits, bool kHasSeqIdx, bool kHasDfinalStates> | |
__global__ __launch_bounds__(Ktraits::kNThreads) | |
void causal_conv1d_channellast_bwd_kernel(ConvParamsBwd params) { | |
constexpr int kWidth = Ktraits::kWidth; | |
constexpr int kNThreads = Ktraits::kNThreads; | |
constexpr bool kSiluAct = Ktraits::kSiluAct; | |
constexpr int kNElts = Ktraits::kNElts; | |
constexpr int kNWarp = Ktraits::kNWarps; | |
constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow; | |
constexpr int kLPerLoad = Ktraits::kNColsPerLoad; | |
constexpr int kChunkSizeL = Ktraits::kChunkSizeL; | |
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow; | |
using input_t = typename Ktraits::input_t; | |
using vec_t = typename Ktraits::vec_t; | |
using weight_t = typename Ktraits::weight_t; | |
// Shared memory. | |
__shared__ input_t dout_smem[kChunkSizeL + kWidth - 1][kChunkSizeC + kNElts]; | |
__shared__ input_t x_smem[kWidth - 1 + kChunkSizeL + kWidth - 1][kChunkSizeC + kNElts]; | |
const int batch_id = blockIdx.x; | |
const int chunk_l_id = blockIdx.y; | |
const int chunk_c_id = blockIdx.z; | |
const int tid = threadIdx.x; | |
const int l_idx = tid / kNThreadsPerC; | |
const int c_idx = tid % kNThreadsPerC; | |
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride | |
+ (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts; | |
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) | |
+ chunk_c_id * kChunkSizeC * params.weight_c_stride; | |
input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride | |
+ (chunk_l_id * kChunkSizeL + l_idx) * params.dout_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts; | |
input_t *dx = reinterpret_cast<input_t *>(params.dx_ptr) + batch_id * params.dx_batch_stride | |
+ (chunk_l_id * kChunkSizeL + l_idx) * params.dx_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts; | |
float *dweight = reinterpret_cast<float *>(params.dweight_ptr) | |
+ chunk_c_id * kChunkSizeC * params.dweight_c_stride; | |
int *seq_idx = !kHasSeqIdx ? nullptr : reinterpret_cast<int *>(params.seq_idx_ptr) | |
+ batch_id * params.seqlen + chunk_l_id * kChunkSizeL; | |
input_t *initial_states = params.initial_states_ptr == nullptr || chunk_l_id > 0 ? nullptr | |
: reinterpret_cast<input_t *>(params.initial_states_ptr) + batch_id * params.initial_states_batch_stride + l_idx * params.initial_states_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts; | |
input_t *dinitial_states = params.dinitial_states_ptr == nullptr || chunk_l_id > 0 ? nullptr | |
: reinterpret_cast<input_t *>(params.dinitial_states_ptr) + batch_id * params.dinitial_states_batch_stride + l_idx * params.dinitial_states_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts; | |
input_t *dfinal_states = params.dfinal_states_ptr == nullptr ? nullptr | |
: reinterpret_cast<input_t *>(params.dfinal_states_ptr) + batch_id * params.dfinal_states_batch_stride + chunk_c_id * kChunkSizeC; | |
for (int l = 0; l < Ktraits::kNLoads; ++l) { | |
input_t dout_vals_load[kNElts] = {0}; | |
input_t x_vals_load[kNElts] = {0}; | |
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
reinterpret_cast<vec_t *>(dout_vals_load)[0] = *reinterpret_cast<vec_t *>(dout + l * kLPerLoad * params.dout_l_stride); | |
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride); | |
} | |
reinterpret_cast<vec_t *>(dout_smem[l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(dout_vals_load)[0]; | |
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0]; | |
} | |
// Load the elements from the previous chunk or next chunk that are needed for convolution. | |
if (l_idx < kWidth - 1) { | |
input_t dout_vals_load[kNElts] = {0}; | |
input_t x_vals_load[kNElts] = {0}; | |
if ((chunk_l_id + 1) * kChunkSizeL + l_idx < params.seqlen | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
reinterpret_cast<vec_t *>(dout_vals_load)[0] = *reinterpret_cast<vec_t *>(dout + kChunkSizeL * params.dout_l_stride); | |
} | |
if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0 | |
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride); | |
} else if (initial_states != nullptr | |
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < 0 | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(initial_states); | |
} | |
reinterpret_cast<vec_t *>(dout_smem[kChunkSizeL + l_idx])[c_idx] = reinterpret_cast<vec_t *>(dout_vals_load)[0]; | |
reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0]; | |
} | |
// Need to load (kWdith - 1) extra x's on the right to recompute the (kChunkSizeL + kWidth - 1) outputs | |
if constexpr (kSiluAct) { | |
if (l_idx < kWidth - 1) { | |
input_t x_vals_load[kNElts] = {0}; | |
if ((chunk_l_id + 1) * kChunkSizeL + l_idx < params.seqlen | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + kChunkSizeL * params.x_l_stride); | |
} | |
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + kChunkSizeL + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0]; | |
} | |
} | |
__syncthreads(); | |
constexpr int kLPerThread = constexpr_min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL); | |
static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC); | |
constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread; | |
static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL); | |
// kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity | |
static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0); | |
static_assert((kLPerThread & (kLPerThread - 1)) == 0); | |
static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0); | |
static_assert(kNThreadsPerRow <= 32); | |
const int row_idx = tid / kNThreadsPerRow; | |
const int col_idx = tid % kNThreadsPerRow; | |
float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]); | |
float weight_vals[kWidth] = {0}; | |
if (chunk_c_id * kChunkSizeC + row_idx < params.dim) { | |
for (int w = 0; w < kWidth; ++w) { | |
weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride]; | |
} | |
} | |
float dout_vals[kLPerThread + kWidth - 1]; | |
float x_vals[kWidth - 1 + kLPerThread + kWidth - 1]; | |
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) { | |
dout_vals[i] = float(dout_smem[col_idx * kLPerThread + i][row_idx]); | |
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]); | |
} | |
int seq_idx_thread[kWidth - 1 + kLPerThread + kWidth - 1]; | |
if constexpr (kHasSeqIdx) { | |
for (int i = 0; i < kWidth - 1 + kLPerThread + kWidth - 1; ++i) { | |
const int l_idx = chunk_l_id * kChunkSizeL + col_idx * kLPerThread + i - (kWidth - 1); | |
seq_idx_thread[i] = l_idx >= 0 && l_idx < params.seqlen ? seq_idx[col_idx * kLPerThread + i - (kWidth - 1)] : -1; | |
} | |
} | |
if constexpr (kSiluAct) { // Recompute the output | |
for (int i = kWidth - 1 + kLPerThread; i < kWidth - 1 + kLPerThread + kWidth - 1; ++i) { | |
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]); | |
} | |
for (int i = 0; i < kLPerThread + kWidth - 1; ++i) { | |
float out_val = bias_val; | |
const int seq_idx_cur = !kHasSeqIdx ? 0 : seq_idx_thread[i + kWidth - 1]; | |
for (int w = 0; w < kWidth; ++w) { | |
if constexpr (!kHasSeqIdx) { | |
out_val += weight_vals[w] * x_vals[i + w]; | |
} else { | |
out_val += seq_idx_thread[i + w] == seq_idx_cur ? weight_vals[w] * x_vals[i + w] : 0.f; | |
} | |
} | |
float out_val_sigmoid = 1.f / (1.f + expf(-out_val)); | |
dout_vals[i] *= out_val_sigmoid * (1 + out_val * (1 - out_val_sigmoid)); | |
} | |
} | |
float dweight_vals[kWidth] = {0}; | |
SumOp<float> sum_op; | |
for (int w = 0; w < kWidth; ++w) { | |
for (int i = 0; i < kLPerThread; ++i) { | |
if constexpr (!kHasSeqIdx) { | |
dweight_vals[w] += x_vals[i + w] * dout_vals[i]; | |
} else { | |
dweight_vals[w] += seq_idx_thread[i + w] == seq_idx_thread[kWidth - 1 + i] ? x_vals[i + w] * dout_vals[i] : 0.f; | |
} | |
} | |
dweight_vals[w] = Allreduce<kNThreadsPerRow>::run(dweight_vals[w], sum_op); | |
if (col_idx == 0 && chunk_c_id * kChunkSizeC + row_idx < params.dim) { | |
atomicAdd(&reinterpret_cast<float *>(dweight)[row_idx * params.dweight_c_stride + w * params.dweight_width_stride], dweight_vals[w]); | |
} | |
} | |
if (params.bias_ptr != nullptr) { | |
float dbias_val = 0.f; | |
for (int i = 0; i < kLPerThread; ++i) { dbias_val += dout_vals[i]; } | |
dbias_val = Allreduce<kNThreadsPerRow>::run(dbias_val, sum_op); | |
if (col_idx == 0 && chunk_c_id * kChunkSizeC + row_idx < params.dim) { | |
atomicAdd(&reinterpret_cast<float *>(params.dbias_ptr)[chunk_c_id * kChunkSizeC + row_idx], dbias_val); | |
} | |
} | |
float dx_vals[kLPerThread] = {0}; | |
for (int i = 0; i < kLPerThread; ++i) { | |
const int seq_idx_cur = !kHasSeqIdx ? 0 : seq_idx_thread[i + kWidth - 1]; | |
for (int w = 0; w < kWidth; ++w) { | |
if constexpr (!kHasSeqIdx) { | |
dx_vals[i] += weight_vals[kWidth - 1 - w] * dout_vals[i + w]; | |
} else { | |
dx_vals[i] += seq_idx_thread[kWidth - 1 + i + w] == seq_idx_cur ? weight_vals[kWidth - 1 - w] * dout_vals[i + w] : 0.f; | |
} | |
} | |
// if (dfinal_states != nullptr) { | |
if constexpr (kHasDfinalStates) { | |
if (chunk_l_id * kChunkSizeL + col_idx * kLPerThread + i >= params.seqlen - kWidth + 1 | |
&& chunk_l_id * kChunkSizeL + col_idx * kLPerThread + i < params.seqlen | |
&& chunk_c_id * kChunkSizeC + row_idx < params.dim) { | |
dx_vals[i] += float(dfinal_states[((chunk_l_id * kChunkSizeL + col_idx * kLPerThread + i) - (params.seqlen - kWidth + 1)) * params.dfinal_states_l_stride + row_idx * params.dfinal_states_c_stride]); | |
} | |
} | |
} | |
float dxinit_vals[kWidth - 1] = {0}; | |
static_assert(kLPerThread >= kWidth - 1); // So only threads with col_idx == 0 need to handle dinitial_states | |
if (dinitial_states != nullptr && col_idx == 0) { | |
for (int i = 0; i < kWidth - 1; ++i) { | |
for (int w = 0; w < kWidth; ++w) { | |
dxinit_vals[i] += i + w - (kWidth - 1) >= 0 ? weight_vals[kWidth - 1 - w] * dout_vals[i + w - (kWidth - 1)] : 0.f; | |
} | |
// chunk_l_id must be 0 because dinitial_states != nullptr | |
// if (dfinal_states != nullptr) { | |
if constexpr (kHasDfinalStates) { | |
if (i >= params.seqlen) { | |
dxinit_vals[i] += float(dfinal_states[(i - params.seqlen) * params.dfinal_states_l_stride + row_idx * params.dfinal_states_c_stride]); | |
} | |
} | |
} | |
} | |
__syncthreads(); | |
for (int i = 0; i < kLPerThread; ++i) { x_smem[kWidth - 1 + col_idx * kLPerThread + i][row_idx] = dx_vals[i]; } | |
if (dinitial_states != nullptr && col_idx == 0) { | |
for (int i = 0; i < kWidth - 1; ++i) { x_smem[i][row_idx] = dxinit_vals[i]; } | |
} | |
__syncthreads(); | |
for (int l = 0; l < Ktraits::kNLoads; ++l) { | |
input_t dx_vals_store[kNElts]; | |
reinterpret_cast<vec_t *>(dx_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx]; | |
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
*reinterpret_cast<vec_t *>(dx + l * kLPerLoad * params.dx_l_stride) = reinterpret_cast<vec_t *>(dx_vals_store)[0]; | |
} | |
} | |
if (dinitial_states != nullptr | |
&& l_idx < kWidth - 1 | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
input_t dxinit_vals_store[kNElts]; | |
reinterpret_cast<vec_t *>(dxinit_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx]; | |
*reinterpret_cast<vec_t *>(dinitial_states) = reinterpret_cast<vec_t *>(dxinit_vals_store)[0]; | |
} | |
} | |
template<int kNThreads, int kWidth, typename input_t, typename weight_t> | |
void causal_conv1d_channellast_bwd_launch(ConvParamsBwd ¶ms, cudaStream_t stream) { | |
BOOL_SWITCH(params.silu_activation, kSiluAct, [&] { | |
BOOL_SWITCH(params.seq_idx_ptr != nullptr, kHasSeqIdx, [&] { | |
BOOL_SWITCH(params.dfinal_states_ptr != nullptr, kHasDfinalStates, [&] { | |
BOOL_SWITCH(params.seqlen <= 128, kChunkSizeL64, [&] { | |
// kChunkSizeL = 128 is slightly faster than 64 when seqlen is larger | |
static constexpr int kChunk = kChunkSizeL64 ? 64 : 128; | |
using Ktraits = Causal_conv1d_channellast_bwd_kernel_traits<kNThreads, kWidth, kChunk, kSiluAct, true, input_t, weight_t>; | |
// constexpr int kSmemSize = Ktraits::kSmemSize; | |
constexpr int kChunkSizeL = Ktraits::kChunkSizeL; | |
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow; | |
const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL; | |
const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC; | |
dim3 grid(params.batch, n_chunks_L, n_chunks_C); | |
dim3 block(Ktraits::kNThreads); | |
auto kernel = &causal_conv1d_channellast_bwd_kernel<Ktraits, kHasSeqIdx, kHasDfinalStates>; | |
// if (kSmemSize >= 48 * 1024) { | |
// C10_CUDA_CHECK(cudaFuncSetAttribute( | |
// kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize)); | |
// } | |
// kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params); | |
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params); | |
C10_CUDA_KERNEL_LAUNCH_CHECK(); | |
}); | |
}); | |
}); | |
}); | |
} | |
template<typename input_t, typename weight_t> | |
void causal_conv1d_channellast_bwd_cuda(ConvParamsBwd ¶ms, cudaStream_t stream) { | |
if (params.width == 2) { | |
causal_conv1d_channellast_bwd_launch<128, 2, input_t, weight_t>(params, stream); | |
} else if (params.width == 3) { | |
causal_conv1d_channellast_bwd_launch<128, 3, input_t, weight_t>(params, stream); | |
} else if (params.width == 4) { | |
causal_conv1d_channellast_bwd_launch<128, 4, input_t, weight_t>(params, stream); | |
} | |
} | |
template void causal_conv1d_bwd_cuda<float, float>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_bwd_cuda<at::Half, float>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_bwd_cuda<at::BFloat16, float>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_bwd_cuda<float, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_bwd_cuda<at::Half, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_bwd_cuda<at::BFloat16, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_bwd_cuda<float, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_bwd_cuda<at::Half, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_bwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_bwd_cuda<float, float>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_bwd_cuda<at::Half, float>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, float>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_bwd_cuda<float, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_bwd_cuda<at::Half, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_bwd_cuda<float, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_bwd_cuda<at::Half, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream); |