Spaces:
Runtime error
Runtime error
SoooSlooow
commited on
Commit
·
d1ef404
1
Parent(s):
a44a953
upload src
Browse files- app.py +70 -0
- models/nnet/nnet.pt +3 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-310.pyc +0 -0
- src/data/__init__.py +0 -0
- src/data/__pycache__/__init__.cpython-310.pyc +0 -0
- src/data/__pycache__/preprocessing_utils.cpython-310.pyc +0 -0
- src/data/preprocessing_utils.py +36 -0
- src/models/__init__.py +0 -0
- src/models/__pycache__/__init__.cpython-310.pyc +0 -0
- src/models/__pycache__/models_utils.cpython-310.pyc +0 -0
- src/models/models_utils.py +591 -0
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from src.data.preprocessing_utils import DataPreprocessor
|
5 |
+
|
6 |
+
MODEL_FILEPATH = 'models/nnet/nnet.pt'
|
7 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
8 |
+
with open(MODEL_FILEPATH, 'rb') as file:
|
9 |
+
clf = torch.load(file, map_location=device)
|
10 |
+
|
11 |
+
preprocessor = DataPreprocessor()
|
12 |
+
|
13 |
+
strings = {
|
14 |
+
'nationality': 'Есть предпочтения по национальности',
|
15 |
+
'families': 'Есть предпочтение семьям',
|
16 |
+
'sex': 'Есть предпочтения по полу'
|
17 |
+
}
|
18 |
+
|
19 |
+
examples = [
|
20 |
+
'''Просьба посредников не беспокоить. Ищем ОДНУ ДЕВУШКУ.
|
21 |
+
Сдаётся в аренду на длительный срок светлая и уютная квартира - студия
|
22 |
+
общей площадью 33м2, находящаяся на 4м этаже 5и этажного теплого кирпичного дома. Современный ремонт!
|
23 |
+
Рядом в пешей доступности парк Красная Пресня (5 мин)/ Красногвардейские Пруды (2 мин)/
|
24 |
+
Москва-Сити (10 мин)! Магазины/кофейни/рестораны! 10 мин на машине до любой точки в центре города!
|
25 |
+
В квартире есть вся необходимая для проживания мебель и техника.
|
26 |
+
Строго без животных, строго Славян. Просмотр в любое время - ключи на руках.
|
27 |
+
''',
|
28 |
+
'''Сдам на длительный срок семейной паре, только с гражданством РФ.
|
29 |
+
Квартира после косметического ремонта. Без мебели.
|
30 |
+
Есть кухонная мебель и мебель в ванной комнате.
|
31 |
+
Бытовая техника для проживания присутствует.
|
32 |
+
Оплата = аренда + счётчики (свет, вода).
|
33 |
+
''',
|
34 |
+
'''В современном доме. Собственник без комиссии.
|
35 |
+
Закрытая территория. Доступ через охрану.
|
36 |
+
М Прокшино 10 мин пешком.
|
37 |
+
Без детей и животных.
|
38 |
+
Возможно без залога.
|
39 |
+
Счетчики и интернет включены в стоимость
|
40 |
+
'''
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
def make_output_string(labels):
|
45 |
+
output_list = []
|
46 |
+
for label in strings.keys():
|
47 |
+
if labels[label]:
|
48 |
+
output_list.append(strings[label])
|
49 |
+
if output_list:
|
50 |
+
output_str = ', '.join(output_list).capitalize()
|
51 |
+
else:
|
52 |
+
output_str = 'Нет особенностей'
|
53 |
+
return output_str
|
54 |
+
|
55 |
+
|
56 |
+
def predict_label(text):
|
57 |
+
preprocessed_text = preprocessor.preprocess_texts([text])
|
58 |
+
print(preprocessed_text)
|
59 |
+
if preprocessed_text == [[]]:
|
60 |
+
return 'Введите текст объявления!'
|
61 |
+
labels = clf.predict_labels(preprocessed_text)
|
62 |
+
output_str = make_output_string(labels)
|
63 |
+
return output_str
|
64 |
+
|
65 |
+
|
66 |
+
demo = gr.Interface(fn=predict_label, inputs=[gr.Text(label="Текст объявления", lines=5)],
|
67 |
+
outputs=[gr.Textbox(label="Особенности объявления")],
|
68 |
+
examples=examples)
|
69 |
+
|
70 |
+
demo.launch()
|
models/nnet/nnet.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eca046bc6417544613037ccbd7c55537dbfa0d44d181480b0c5aedc32b775877
|
3 |
+
size 3474673281
|
src/__init__.py
ADDED
File without changes
|
src/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (156 Bytes). View file
|
|
src/data/__init__.py
ADDED
File without changes
|
src/data/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (161 Bytes). View file
|
|
src/data/__pycache__/preprocessing_utils.cpython-310.pyc
ADDED
Binary file (1.92 kB). View file
|
|
src/data/preprocessing_utils.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import string
|
2 |
+
import nltk
|
3 |
+
from nltk.corpus import stopwords
|
4 |
+
from nltk.tokenize import WordPunctTokenizer
|
5 |
+
import pymorphy2
|
6 |
+
|
7 |
+
|
8 |
+
class DataPreprocessor:
|
9 |
+
|
10 |
+
def __init__(self):
|
11 |
+
nltk.download('stopwords')
|
12 |
+
self.morph = pymorphy2.MorphAnalyzer()
|
13 |
+
self.tokenizer = WordPunctTokenizer()
|
14 |
+
self.punctuation = set(string.punctuation)
|
15 |
+
self.stopwords_russian = stopwords.words("russian")
|
16 |
+
self.stop_tokens = (set(self.stopwords_russian) - {'и', 'или', 'не'}).union(self.punctuation)
|
17 |
+
|
18 |
+
def tokenize_data(self, texts):
|
19 |
+
tokens = [self.tokenizer.tokenize(str(text).lower()) for text in texts]
|
20 |
+
return tokens
|
21 |
+
|
22 |
+
def lemmatize_tokens_string(self, tokens_string):
|
23 |
+
new_tokens = []
|
24 |
+
for token in tokens_string:
|
25 |
+
if token not in self.stop_tokens:
|
26 |
+
new_tokens.append(self.morph.parse(token)[0].normal_form)
|
27 |
+
return new_tokens
|
28 |
+
|
29 |
+
def lemmatize_tokens(self, tokens):
|
30 |
+
for i in range(len(tokens)):
|
31 |
+
tokens[i] = self.lemmatize_tokens_string(tokens[i])
|
32 |
+
|
33 |
+
def preprocess_texts(self, texts):
|
34 |
+
tokens = self.tokenize_data(texts)
|
35 |
+
self.lemmatize_tokens(tokens)
|
36 |
+
return tokens
|
src/models/__init__.py
ADDED
File without changes
|
src/models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (163 Bytes). View file
|
|
src/models/__pycache__/models_utils.cpython-310.pyc
ADDED
Binary file (18.4 kB). View file
|
|
src/models/models_utils.py
ADDED
@@ -0,0 +1,591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from gensim.models import KeyedVectors
|
6 |
+
from collections import Counter
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from sklearn.metrics import roc_auc_score, precision_recall_curve
|
11 |
+
import tqdm
|
12 |
+
from copy import deepcopy
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
from transformers import DistilBertTokenizer, DistilBertModel
|
15 |
+
|
16 |
+
|
17 |
+
def get_roc_aucs(y, probas):
|
18 |
+
y_onehot = pd.get_dummies(y)
|
19 |
+
roc_auc_scores = []
|
20 |
+
if y_onehot.shape[1] > 2:
|
21 |
+
for i in range(y_onehot.shape[1]):
|
22 |
+
roc_auc_scores.append(roc_auc_score(y_onehot[i], probas[:, i]))
|
23 |
+
roc_auc_scores.append(roc_auc_score(y, probas, multi_class='ovo', average='macro'))
|
24 |
+
else:
|
25 |
+
roc_auc_scores.append(roc_auc_score(y, probas[:, 1]))
|
26 |
+
return roc_auc_scores
|
27 |
+
|
28 |
+
|
29 |
+
def get_max_f1_score(y, probas):
|
30 |
+
if probas.shape[1] != 2:
|
31 |
+
raise ValueError('Expected probabilities for 2 classes would be given')
|
32 |
+
y_onehot = pd.get_dummies(y)
|
33 |
+
f1_score = []
|
34 |
+
threshold = []
|
35 |
+
p, r, t = precision_recall_curve(y, probas[:, 1])
|
36 |
+
f1_scores = 2 * p * r / (p + r + 0.001)
|
37 |
+
threshold.append(t[np.argmax(f1_scores)])
|
38 |
+
f1_score.append(np.max(f1_scores))
|
39 |
+
return f1_score, threshold
|
40 |
+
|
41 |
+
|
42 |
+
class RNN(nn.Module):
|
43 |
+
|
44 |
+
def __init__(self, vectors, n_of_words, n_of_classes, num_layers, bidirectional):
|
45 |
+
dim = vectors.shape[1]
|
46 |
+
d = 2 if bidirectional else 1
|
47 |
+
super().__init__()
|
48 |
+
self.emb = nn.Embedding(n_of_words, dim)
|
49 |
+
self.emb.load_state_dict({'weight': torch.tensor(vectors)})
|
50 |
+
self.emb.weight.requires_grad = False
|
51 |
+
self.gru = nn.GRU(input_size=dim, hidden_size=dim, batch_first=True,
|
52 |
+
num_layers=num_layers, bidirectional=bidirectional)
|
53 |
+
self.linear = nn.Linear(dim * num_layers * d, n_of_classes)
|
54 |
+
|
55 |
+
def forward(self, batch):
|
56 |
+
emb = self.emb(batch)
|
57 |
+
_, last_state = self.gru(emb)
|
58 |
+
last_state = torch.permute(last_state, (1, 0, 2)).reshape(1, batch.shape[0], -1).squeeze()
|
59 |
+
out = self.linear(last_state.squeeze())
|
60 |
+
if len(out.size()) == 1:
|
61 |
+
out = out.unsqueeze(0)
|
62 |
+
return out
|
63 |
+
|
64 |
+
|
65 |
+
class DistilBERTClass(torch.nn.Module):
|
66 |
+
def __init__(self, n_classes):
|
67 |
+
super().__init__()
|
68 |
+
self.l1 = DistilBertModel.from_pretrained('DeepPavlov/distilrubert-small-cased-conversational')
|
69 |
+
self.linear = torch.nn.Linear(768, n_classes)
|
70 |
+
|
71 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
72 |
+
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
|
73 |
+
hidden_state = output_1[0]
|
74 |
+
pooler = hidden_state[:, 0]
|
75 |
+
output = self.linear(pooler)
|
76 |
+
return output
|
77 |
+
|
78 |
+
|
79 |
+
class BaseClassifier:
|
80 |
+
|
81 |
+
def __init__(self, batch_size=16, epochs=100):
|
82 |
+
self.batch_size = batch_size
|
83 |
+
self.epochs = epochs
|
84 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
85 |
+
|
86 |
+
def preprocess_with_random_initialization(self, train_tokens):
|
87 |
+
self.pad_idx = 0
|
88 |
+
self.unk_idx = 1
|
89 |
+
|
90 |
+
set_of_words = set()
|
91 |
+
for tokens_string in train_tokens:
|
92 |
+
set_of_words.update(tokens_string)
|
93 |
+
|
94 |
+
self.idx_to_word = ['PADDING', 'UNK'] + list(set_of_words)
|
95 |
+
self.word_to_idx = {key: i for i, key in enumerate(self.idx_to_word)}
|
96 |
+
self.amount_of_words = len(self.idx_to_word)
|
97 |
+
|
98 |
+
self.vectors = np.zeros((len(self.idx_to_word), 300))
|
99 |
+
self.vectors[0, :] = np.zeros(300)
|
100 |
+
self.vectors[1:len(self.idx_to_word), :] = (np.random.rand(len(self.idx_to_word) - 1, 300) - 0.5) / 300
|
101 |
+
|
102 |
+
def preprocess(self, vectors_file_path):
|
103 |
+
self.emb = KeyedVectors.load_word2vec_format(vectors_file_path)
|
104 |
+
|
105 |
+
self.pad_idx = 0
|
106 |
+
self.unk_idx = 1
|
107 |
+
|
108 |
+
self.idx_to_word = ['PADDING', 'UNK'] + list(self.emb.index_to_key)
|
109 |
+
self.word_to_idx = {key: i for i, key in enumerate(self.idx_to_word)}
|
110 |
+
self.amount_of_words = len(self.idx_to_word)
|
111 |
+
|
112 |
+
self.vectors = np.zeros((len(self.idx_to_word), 300))
|
113 |
+
self.vectors[0, :] = np.zeros(300)
|
114 |
+
self.vectors[1, :] = (np.random.rand(300) - 0.5) / 300
|
115 |
+
for i in range(2, len(self.idx_to_word)):
|
116 |
+
self.vectors[i, :] = self.emb.get_vector(self.idx_to_word[i])
|
117 |
+
|
118 |
+
def fit(self, train_tokens, y_train, test_tokens=None, y_test=None,
|
119 |
+
reinitialize=True, stop_epochs=None, show_logs=False):
|
120 |
+
if reinitialize:
|
121 |
+
self.n_of_classes = y_train.nunique()
|
122 |
+
self.initialize_nnet()
|
123 |
+
|
124 |
+
self.print_test = test_tokens and y_test
|
125 |
+
self.stop_epochs = stop_epochs
|
126 |
+
train_scores = []
|
127 |
+
self.train_scores_mean = []
|
128 |
+
self.test_scores = []
|
129 |
+
self.test_aucs = []
|
130 |
+
self.test_f1 = []
|
131 |
+
criterion = nn.CrossEntropyLoss()
|
132 |
+
for epoch in tqdm.tqdm(range(self.epochs)):
|
133 |
+
self.epoch = epoch
|
134 |
+
self.nnet.train()
|
135 |
+
train_batches = self.batch_generator(train_tokens, y_train)
|
136 |
+
test_batches = self.batch_generator(test_tokens, y_test)
|
137 |
+
for i, batch in tqdm.tqdm(
|
138 |
+
enumerate(train_batches),
|
139 |
+
total=len(train_tokens) // self.batch_size
|
140 |
+
):
|
141 |
+
pred = self.nnet(batch['tokens'])
|
142 |
+
loss = criterion(pred, batch['labels'])
|
143 |
+
self.optimizer.zero_grad()
|
144 |
+
loss.backward()
|
145 |
+
self.optimizer.step()
|
146 |
+
if show_logs and i % 400 == 0:
|
147 |
+
train_score = criterion(self.nnet(batch['tokens']), batch['labels'])
|
148 |
+
print(train_score.item())
|
149 |
+
train_scores.append(train_score.item())
|
150 |
+
if show_logs:
|
151 |
+
self.train_scores_mean.append(sum(train_scores) / len(train_scores))
|
152 |
+
train_scores = []
|
153 |
+
if self.print_test:
|
154 |
+
test_pred_prob = torch.tensor([], device='cpu')
|
155 |
+
with torch.no_grad():
|
156 |
+
self.nnet.eval()
|
157 |
+
for batch in test_batches:
|
158 |
+
test_batch_pred_prob = self.nnet(batch['tokens'])
|
159 |
+
test_batch_pred_prob_cpu = test_batch_pred_prob.to('cpu')
|
160 |
+
test_pred_prob = torch.cat((test_pred_prob, test_batch_pred_prob_cpu), 0)
|
161 |
+
test_score = criterion(test_pred_prob, torch.tensor(y_test.values, device='cpu'))
|
162 |
+
self.test_scores.append(test_score.item())
|
163 |
+
test_pred_probas = F.softmax(test_pred_prob).detach().cpu().numpy()
|
164 |
+
self.test_aucs.append(get_roc_aucs(y_test, test_pred_probas))
|
165 |
+
self.test_f1.append(get_max_f1_score(y_test, test_pred_probas)[0])
|
166 |
+
self.print_metrics()
|
167 |
+
if self.early_stopping_check():
|
168 |
+
break
|
169 |
+
|
170 |
+
def count_tokens(self, tokens):
|
171 |
+
self.words_counter = Counter()
|
172 |
+
self.amount_of_tokens = 0
|
173 |
+
for s in tokens:
|
174 |
+
self.words_counter.update(s)
|
175 |
+
self.amount_of_tokens += len(s)
|
176 |
+
|
177 |
+
def index_tokens(self, tokens_string):
|
178 |
+
return [self.word_to_idx.get(token, self.unk_idx) for token in tokens_string]
|
179 |
+
|
180 |
+
def fill_with_pads(self, tokens):
|
181 |
+
tokens = deepcopy(tokens)
|
182 |
+
max_len = 0
|
183 |
+
for tokens_string in tokens:
|
184 |
+
max_len = max(max_len, len(tokens_string))
|
185 |
+
for tokens_string in tokens:
|
186 |
+
for i in range(len(tokens_string), max_len):
|
187 |
+
tokens_string.append(self.pad_idx)
|
188 |
+
return tokens
|
189 |
+
|
190 |
+
def as_matrix(self, tokens):
|
191 |
+
tokens = deepcopy(tokens)
|
192 |
+
for j, s in enumerate(tokens):
|
193 |
+
tokens[j] = self.index_tokens(s)
|
194 |
+
tokens = self.fill_with_pads(tokens)
|
195 |
+
return tokens
|
196 |
+
|
197 |
+
def batch_generator(self, tokens, labels=None):
|
198 |
+
for i in range(0, len(tokens), self.batch_size):
|
199 |
+
batch_tokens = tokens[i: i + self.batch_size]
|
200 |
+
if labels:
|
201 |
+
batch_labels = torch.tensor(labels.values[i: i + self.batch_size],
|
202 |
+
dtype=torch.long,
|
203 |
+
device=self.device)
|
204 |
+
else:
|
205 |
+
batch_labels = None
|
206 |
+
|
207 |
+
batch_tokens_idx = torch.tensor(self.as_matrix(batch_tokens),
|
208 |
+
dtype=torch.int,
|
209 |
+
device=self.device)
|
210 |
+
if len(batch_tokens_idx.size()) == 1:
|
211 |
+
batch_tokens_idx = torch.unsqueeze(batch_tokens_idx, 0)
|
212 |
+
|
213 |
+
batch = {
|
214 |
+
'tokens': batch_tokens_idx,
|
215 |
+
'labels': batch_labels
|
216 |
+
}
|
217 |
+
yield batch
|
218 |
+
|
219 |
+
def print_metrics(self, print_test=True):
|
220 |
+
|
221 |
+
if self.print_test:
|
222 |
+
print(f'epoch {self.epoch}/{self.epochs}')
|
223 |
+
print('auc', self.test_aucs[-1])
|
224 |
+
print('score', self.test_scores[-1])
|
225 |
+
print('f1 score', self.test_f1[-1])
|
226 |
+
|
227 |
+
legend_labels = []
|
228 |
+
if self.n_of_classes > 2:
|
229 |
+
for i in range(self.n_of_classes):
|
230 |
+
legend_labels.append(f'Class {i}')
|
231 |
+
legend_labels.append('General')
|
232 |
+
|
233 |
+
plt.figure(figsize=(5, 15))
|
234 |
+
|
235 |
+
plt.clf()
|
236 |
+
|
237 |
+
plt.subplot(3, 1, 1)
|
238 |
+
plt.plot(np.arange(1, self.epoch + 2), self.test_aucs)
|
239 |
+
plt.grid()
|
240 |
+
plt.title('Test ROC AUC')
|
241 |
+
plt.xlabel('Num. of epochs')
|
242 |
+
plt.ylabel('ROC AUC')
|
243 |
+
plt.legend(legend_labels)
|
244 |
+
|
245 |
+
plt.subplot(3, 1, 2)
|
246 |
+
plt.plot(np.arange(1, self.epoch + 2), self.test_f1)
|
247 |
+
plt.grid()
|
248 |
+
plt.title('Test F1-score')
|
249 |
+
plt.xlabel('Num. of epochs')
|
250 |
+
plt.ylabel('F1-score')
|
251 |
+
plt.legend(legend_labels)
|
252 |
+
|
253 |
+
plt.subplot(3, 1, 3)
|
254 |
+
plt.plot(np.arange(1, self.epoch + 2), self.train_scores_mean, label='Train loss')
|
255 |
+
plt.plot(np.arange(1, self.epoch + 2), self.test_scores, label='Test loss')
|
256 |
+
plt.title('Loss')
|
257 |
+
plt.xlabel('Num. of epochs')
|
258 |
+
plt.ylabel('Loss')
|
259 |
+
plt.legend()
|
260 |
+
plt.grid()
|
261 |
+
plt.draw()
|
262 |
+
|
263 |
+
else:
|
264 |
+
plt.figure(figsize=(5, 15))
|
265 |
+
plt.plot(np.arange(1, self.epoch + 2), self.train_scores_mean, label='Train loss')
|
266 |
+
plt.title('Loss')
|
267 |
+
plt.xlabel('Num. of epochs')
|
268 |
+
plt.ylabel('Loss')
|
269 |
+
plt.legend()
|
270 |
+
plt.grid()
|
271 |
+
plt.show()
|
272 |
+
|
273 |
+
def early_stopping_check(self):
|
274 |
+
if self.stop_epochs is None or self.stop_epochs >= len(self.test_scores):
|
275 |
+
return False
|
276 |
+
else:
|
277 |
+
print(self.test_scores)
|
278 |
+
first_score = np.array(self.test_scores)[-self.stop_epochs - 1]
|
279 |
+
last_scores = np.array(self.test_scores)[-self.stop_epochs:]
|
280 |
+
return np.all(last_scores >= first_score)
|
281 |
+
|
282 |
+
def predict_proba(self, tokens, labels):
|
283 |
+
batches = self.batch_generator(tokens, labels)
|
284 |
+
pred_probas = torch.tensor([], device=self.device)
|
285 |
+
with torch.no_grad():
|
286 |
+
self.nnet.eval()
|
287 |
+
for batch in batches:
|
288 |
+
batch_prob = self.nnet(batch['tokens'])
|
289 |
+
pred_probas = torch.cat((pred_probas, batch_prob))
|
290 |
+
return F.softmax(pred_probas).detach().cpu().numpy()
|
291 |
+
|
292 |
+
|
293 |
+
class RNNClassifier(BaseClassifier):
|
294 |
+
|
295 |
+
def __init__(self, batch_size=16, epochs=100,
|
296 |
+
num_layers=1, bidirectional=False):
|
297 |
+
self.batch_size = batch_size
|
298 |
+
self.epochs = epochs
|
299 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
300 |
+
self.num_layers = num_layers
|
301 |
+
self.bidirectional = bidirectional
|
302 |
+
|
303 |
+
def initialize_nnet(self):
|
304 |
+
self.nnet = RNN(self.vectors, self.amount_of_words,
|
305 |
+
n_of_classes=self.n_of_classes,
|
306 |
+
num_layers=self.num_layers,
|
307 |
+
bidirectional=self.bidirectional).to(self.device)
|
308 |
+
self.optimizer = torch.optim.Adam(self.nnet.parameters())
|
309 |
+
|
310 |
+
def save_model(self, filepath):
|
311 |
+
with open(filepath, 'wb') as file:
|
312 |
+
torch.save(self.nnet.state_dict(), file)
|
313 |
+
|
314 |
+
def load_model(self, filepath, amount_of_words):
|
315 |
+
self.amount_of_words = amount_of_words
|
316 |
+
self.vectors = np.zeros((amount_of_words, 300))
|
317 |
+
self.n_of_classes = 2
|
318 |
+
self.nnet = RNN(self.vectors, self.amount_of_words,
|
319 |
+
n_of_classes=self.n_of_classes,
|
320 |
+
num_layers=self.num_layers,
|
321 |
+
bidirectional=self.bidirectional).to(self.device)
|
322 |
+
self.nnet.load_state_dict(torch.load(filepath, map_location=self.device))
|
323 |
+
|
324 |
+
|
325 |
+
class DBERTClassifier(BaseClassifier):
|
326 |
+
|
327 |
+
def __init__(self, batch_size=16, epochs=100):
|
328 |
+
self.batch_size = batch_size
|
329 |
+
self.epochs = epochs
|
330 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
331 |
+
|
332 |
+
def initialize_nnet(self):
|
333 |
+
self.nnet = DistilBERTClass(self.n_of_classes).to(self.device)
|
334 |
+
self.optimizer = torch.optim.Adam(self.nnet.parameters(), lr=2e-6)
|
335 |
+
# 'DeepPavlov/rubert-base-cased' 'DeepPavlov/distilrubert-small-cased-conversational',
|
336 |
+
self.tokenizer = DistilBertTokenizer.from_pretrained('DeepPavlov/distilrubert-small-cased-conversational',
|
337 |
+
do_lower_case=True)
|
338 |
+
|
339 |
+
def batch_generator(self, tokens, labels=None):
|
340 |
+
for i in range(0, len(tokens), self.batch_size):
|
341 |
+
batch_tokens = tokens[i: i + self.batch_size]
|
342 |
+
batch_tokens = [' '.join(s) for s in batch_tokens]
|
343 |
+
if labels:
|
344 |
+
batch_labels = torch.tensor(labels.values[i: i + self.batch_size],
|
345 |
+
dtype=torch.long,
|
346 |
+
device=self.device)
|
347 |
+
else:
|
348 |
+
batch_labels = None
|
349 |
+
if len(batch_tokens) == 1:
|
350 |
+
inputs = self.tokenizer.encode_plus(
|
351 |
+
batch_tokens,
|
352 |
+
None,
|
353 |
+
add_special_tokens=True,
|
354 |
+
max_length=512,
|
355 |
+
truncation=True,
|
356 |
+
pad_to_max_length=True,
|
357 |
+
return_token_type_ids=True
|
358 |
+
)
|
359 |
+
else:
|
360 |
+
inputs = self.tokenizer.batch_encode_plus(
|
361 |
+
batch_tokens,
|
362 |
+
add_special_tokens=True,
|
363 |
+
max_length=512,
|
364 |
+
truncation=True,
|
365 |
+
pad_to_max_length=True,
|
366 |
+
return_token_type_ids=True
|
367 |
+
)
|
368 |
+
batch_token_ids = torch.tensor(inputs['input_ids'], device=self.device, dtype=torch.long)
|
369 |
+
batch_mask = torch.tensor(inputs['attention_mask'], device=self.device, dtype=torch.long)
|
370 |
+
batch_token_type_ids = torch.tensor(inputs["token_type_ids"], device=self.device, dtype=torch.long)
|
371 |
+
if len(batch_tokens) == 1:
|
372 |
+
batch_token_ids = batch_token_ids.unsqueeze(0)
|
373 |
+
batch_mask = batch_mask.unsqueeze(0)
|
374 |
+
batch_token_type_ids = batch_token_type_ids.unsqueeze(0)
|
375 |
+
batch = {
|
376 |
+
'tokens': batch_token_ids,
|
377 |
+
'mask': batch_mask,
|
378 |
+
'token_type_ids': batch_token_type_ids,
|
379 |
+
'labels': batch_labels
|
380 |
+
}
|
381 |
+
yield batch
|
382 |
+
|
383 |
+
def fit(self, train_tokens, y_train, test_tokens=None, y_test=None,
|
384 |
+
reinitialize=True, stop_epochs=None, show_logs=False):
|
385 |
+
if reinitialize:
|
386 |
+
self.n_of_classes = y_train.nunique()
|
387 |
+
self.initialize_nnet()
|
388 |
+
|
389 |
+
self.stop_epochs = stop_epochs
|
390 |
+
self.print_test = test_tokens and y_test
|
391 |
+
train_scores = []
|
392 |
+
self.train_scores_mean = []
|
393 |
+
self.test_scores = []
|
394 |
+
self.test_aucs = []
|
395 |
+
self.test_f1 = []
|
396 |
+
criterion = nn.CrossEntropyLoss()
|
397 |
+
for epoch in tqdm.tqdm(range(self.epochs)):
|
398 |
+
self.epoch = epoch
|
399 |
+
self.nnet.train()
|
400 |
+
train_batches = self.batch_generator(train_tokens, y_train)
|
401 |
+
test_batches = self.batch_generator(test_tokens, y_test)
|
402 |
+
for i, batch in tqdm.tqdm(
|
403 |
+
enumerate(train_batches),
|
404 |
+
total=len(train_tokens) // self.batch_size
|
405 |
+
):
|
406 |
+
pred = self.nnet(batch['tokens'], batch['mask'], batch['token_type_ids'])
|
407 |
+
loss = criterion(pred, batch['labels'])
|
408 |
+
self.optimizer.zero_grad()
|
409 |
+
loss.backward()
|
410 |
+
self.optimizer.step()
|
411 |
+
if show_logs and i % 400 == 0:
|
412 |
+
train_score = criterion(self.nnet(batch['tokens'], batch['mask'], batch['token_type_ids']),
|
413 |
+
batch['labels'])
|
414 |
+
print(train_score.item())
|
415 |
+
train_scores.append(train_score.item())
|
416 |
+
if show_logs:
|
417 |
+
self.train_scores_mean.append(sum(train_scores) / len(train_scores))
|
418 |
+
train_scores = []
|
419 |
+
if self.print_test:
|
420 |
+
test_pred_prob = torch.tensor([], device='cpu')
|
421 |
+
with torch.no_grad():
|
422 |
+
self.nnet.eval()
|
423 |
+
for batch in test_batches:
|
424 |
+
test_batch_pred_prob = self.nnet(batch['tokens'], batch['mask'], batch['token_type_ids'])
|
425 |
+
test_batch_pred_prob_cpu = test_batch_pred_prob.to('cpu')
|
426 |
+
test_pred_prob = torch.cat((test_pred_prob, test_batch_pred_prob_cpu), 0)
|
427 |
+
test_score = criterion(test_pred_prob, torch.tensor(y_test.values, device='cpu'))
|
428 |
+
self.test_scores.append(test_score.item())
|
429 |
+
test_pred_probas = F.softmax(test_pred_prob).detach().cpu().numpy()
|
430 |
+
self.test_aucs.append(get_roc_aucs(y_test, test_pred_probas))
|
431 |
+
self.test_f1.append(get_max_f1_score(y_test, test_pred_probas)[0])
|
432 |
+
self.print_metrics()
|
433 |
+
if self.early_stopping_check():
|
434 |
+
break
|
435 |
+
|
436 |
+
def predict_proba(self, tokens, labels):
|
437 |
+
batches = self.batch_generator(tokens, labels)
|
438 |
+
pred_probas = torch.tensor([], device=self.device)
|
439 |
+
with torch.no_grad():
|
440 |
+
self.nnet.eval()
|
441 |
+
for batch in batches:
|
442 |
+
batch_prob = self.nnet(batch['tokens'], batch['mask'],
|
443 |
+
batch['token_type_ids'])
|
444 |
+
pred_probas = torch.cat((pred_probas, batch_prob))
|
445 |
+
return F.softmax(pred_probas).detach().cpu().numpy()
|
446 |
+
|
447 |
+
def predict(self, tokens, labels):
|
448 |
+
return np.argmax(self.predict_proba(tokens, labels), axis=1)
|
449 |
+
|
450 |
+
def save_model(self, filepath):
|
451 |
+
with open(filepath, 'wb') as file:
|
452 |
+
torch.save(self.nnet.state_dict(), file)
|
453 |
+
|
454 |
+
def load_model(self, filepath):
|
455 |
+
self.n_of_classes = 2
|
456 |
+
self.nnet = DistilBERTClass(self.n_of_classes).to(self.device)
|
457 |
+
self.optimizer = torch.optim.Adam(self.nnet.parameters(), lr=2e-6)
|
458 |
+
self.tokenizer = DistilBertTokenizer.from_pretrained(
|
459 |
+
'DeepPavlov/distilrubert-small-cased-conversational',
|
460 |
+
do_lower_case=True
|
461 |
+
)
|
462 |
+
self.nnet.load_state_dict(torch.load(filepath, map_location=self.device))
|
463 |
+
|
464 |
+
|
465 |
+
class AdClassifier:
|
466 |
+
|
467 |
+
def __init__(self, weights_folder, dictionary_path):
|
468 |
+
self.batch_size = 16
|
469 |
+
|
470 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
471 |
+
|
472 |
+
self.pad_idx = 0
|
473 |
+
self.unk_idx = 1
|
474 |
+
|
475 |
+
with open(dictionary_path, 'rb') as file:
|
476 |
+
self.word_to_idx = pickle.load(file)
|
477 |
+
|
478 |
+
self.tokenizer = DistilBertTokenizer.from_pretrained(
|
479 |
+
'DeepPavlov/distilrubert-small-cased-conversational',
|
480 |
+
do_lower_case=True
|
481 |
+
)
|
482 |
+
|
483 |
+
nationality_nn_path = os.path.join(weights_folder, 'model_nationality.pt')
|
484 |
+
families_nn_path = os.path.join(weights_folder, 'model_families.pt')
|
485 |
+
sex_nn_path = os.path.join(weights_folder, 'model_sex.pt')
|
486 |
+
limit_nn_path = os.path.join(weights_folder, 'model_limit.pt')
|
487 |
+
|
488 |
+
self.nationality_clf = DBERTClassifier()
|
489 |
+
self.nationality_clf.load_model(nationality_nn_path)
|
490 |
+
|
491 |
+
self.families_clf = DBERTClassifier()
|
492 |
+
self.families_clf.load_model(families_nn_path)
|
493 |
+
|
494 |
+
self.sex_clf = DBERTClassifier()
|
495 |
+
self.sex_clf.load_model(sex_nn_path)
|
496 |
+
|
497 |
+
self.limit_clf = RNNClassifier(bidirectional=True)
|
498 |
+
self.limit_clf.load_model(limit_nn_path, amount_of_words=len(self.word_to_idx))
|
499 |
+
|
500 |
+
def index_tokens(self, tokens_string):
|
501 |
+
return [self.word_to_idx.get(token, self.unk_idx) for token in tokens_string]
|
502 |
+
|
503 |
+
def fill_with_pads(self, tokens):
|
504 |
+
tokens = deepcopy(tokens)
|
505 |
+
max_len = 0
|
506 |
+
for tokens_string in tokens:
|
507 |
+
max_len = max(max_len, len(tokens_string))
|
508 |
+
for tokens_string in tokens:
|
509 |
+
for i in range(len(tokens_string), max_len):
|
510 |
+
tokens_string.append(self.pad_idx)
|
511 |
+
return tokens
|
512 |
+
|
513 |
+
def as_matrix(self, tokens):
|
514 |
+
tokens = deepcopy(tokens)
|
515 |
+
for j, s in enumerate(tokens):
|
516 |
+
tokens[j] = self.index_tokens(s)
|
517 |
+
tokens = self.fill_with_pads(tokens)
|
518 |
+
return tokens
|
519 |
+
|
520 |
+
def batch_generator(self, tokens):
|
521 |
+
for i in range(0, len(tokens), self.batch_size):
|
522 |
+
batch_tokens = tokens[i: i + self.batch_size]
|
523 |
+
batch_tokens = [' '.join(s) for s in batch_tokens]
|
524 |
+
inputs = self.tokenizer.batch_encode_plus(
|
525 |
+
batch_tokens,
|
526 |
+
add_special_tokens=True,
|
527 |
+
max_length=512,
|
528 |
+
truncation=True,
|
529 |
+
pad_to_max_length=True,
|
530 |
+
return_token_type_ids=True
|
531 |
+
)
|
532 |
+
batch_token_ids = torch.tensor(inputs['input_ids'], device=self.device, dtype=torch.long)
|
533 |
+
batch_mask = torch.tensor(inputs['attention_mask'], device=self.device, dtype=torch.long)
|
534 |
+
batch_token_type_ids = torch.tensor(inputs['token_type_ids'], device=self.device, dtype=torch.long)
|
535 |
+
|
536 |
+
batch_tokens_rnn = tokens[i: i + self.batch_size]
|
537 |
+
batch_tokens_rnn_ids = torch.tensor(self.as_matrix(batch_tokens_rnn),
|
538 |
+
dtype=torch.int,
|
539 |
+
device=self.device)
|
540 |
+
batch = {
|
541 |
+
'tokens': batch_token_ids,
|
542 |
+
'mask': batch_mask,
|
543 |
+
'token_type_ids': batch_token_type_ids,
|
544 |
+
'tokens_rnn': batch_tokens_rnn_ids
|
545 |
+
}
|
546 |
+
yield batch
|
547 |
+
|
548 |
+
def predict_probas(self, tokens):
|
549 |
+
batches = self.batch_generator(tokens)
|
550 |
+
pred_probas = {'nationality': torch.tensor([], device=self.device),
|
551 |
+
'families': torch.tensor([], device=self.device),
|
552 |
+
'sex': torch.tensor([], device=self.device),
|
553 |
+
'limit': torch.tensor([], device=self.device)}
|
554 |
+
batch_probas = dict()
|
555 |
+
with torch.no_grad():
|
556 |
+
self.nationality_clf.nnet.eval()
|
557 |
+
self.families_clf.nnet.eval()
|
558 |
+
self.sex_clf.nnet.eval()
|
559 |
+
self.limit_clf.nnet.eval()
|
560 |
+
for batch in batches:
|
561 |
+
batch_probas['nationality'] = self.nationality_clf.nnet(batch['tokens'], batch['mask'],
|
562 |
+
batch['token_type_ids'])
|
563 |
+
batch_probas['families'] = self.families_clf.nnet(batch['tokens'], batch['mask'],
|
564 |
+
batch['token_type_ids'])
|
565 |
+
batch_probas['sex'] = self.sex_clf.nnet(batch['tokens'], batch['mask'],
|
566 |
+
batch['token_type_ids'])
|
567 |
+
batch_probas['limit'] = self.limit_clf.nnet(batch['tokens_rnn'])
|
568 |
+
for batch_prob_label in batch_probas:
|
569 |
+
pred_probas[batch_prob_label] = torch.cat((pred_probas[batch_prob_label],
|
570 |
+
batch_probas[batch_prob_label]))
|
571 |
+
for pred_prob_label in pred_probas:
|
572 |
+
pred_probas[pred_prob_label] = F.softmax(pred_probas[pred_prob_label]).\
|
573 |
+
detach().cpu().numpy()
|
574 |
+
return pred_probas
|
575 |
+
|
576 |
+
def predict_labels(self, tokens):
|
577 |
+
predicted_probas = self.predict_probas(tokens)
|
578 |
+
predicted_labels = dict()
|
579 |
+
thresholds = {
|
580 |
+
'nationality': 0.75,
|
581 |
+
'families': 0.7,
|
582 |
+
'sex': 0.25,
|
583 |
+
'limit': 0.42
|
584 |
+
}
|
585 |
+
for label in predicted_probas:
|
586 |
+
predicted_labels[label] = predicted_probas[label][:, 1] >= thresholds[label]
|
587 |
+
return predicted_labels
|
588 |
+
|
589 |
+
def save_model(self, filepath):
|
590 |
+
with open(filepath, 'wb') as file:
|
591 |
+
torch.save(self, file)
|