Blackeyes0u0
1
fadb2d1
import gradio as gr
import clip,torch
import requests
from PIL import Image
import numpy as np
import torch
import torch.nn as nn
from io import BytesIO
import urllib.request
# https://hhp-item-resource.s3.ap-northeast-2.amazonaws.com/magazine-resource/magazine/20221017154717/jin._s2.png
# girl bag skirt eye beauty pretty
from selenium import webdriver
from selenium.webdriver.common.by import By
def test2():
driver = webdriver.Chrome() #웹드라이버가 있는 경로에서 Chrome을 가져와 실행-> driver변수
driver.get('https://www.hiphoper.com/') #driver변수를 이용해 원하는 url 접속
imgs = driver.find_elements(By.CSS_SELECTOR,'img.card__image') #css selector를 이용해서 'tag이름.class명'의 순으로 인자를 전달
result = [] #웹 태그에서 attribute 중 src만 담을 리스트
for img in imgs: #모든 이미지들을 탐색
# print(img.get_attribute('src')) #이미지 주소를 print
result.append(img.get_attribute('src')) #이미지 src만 모아서 리스트에 저장
driver.quit()
return result
def similarity(v1,v2,type=0):
if type ==0:
v1_norm = np.linalg.norm(v1)
v2_norm = np.linalg.norm(v2)
return np.dot(v1,v2)/(v1_norm*v2_norm)
else:
return np.sqrt(np.sum((v1-v2)**2))
def democlip(url ,texts):
if url =='':
print('SYSTEM : alternative url')
url = 'https://i.pinimg.com/564x/47/b5/5d/47b55de6f168db65cf46d7d1f0451b64.jpg'
else:
print('SYSTEM : URL progressed')
if texts =='':
texts ='black desk room girl flower'
else:
print('SYSTEM : TEXT progressed')
response = requests.get(url)
image_bytes = response.content
texts = list(texts.split(' '))
"""Gets the embedding values for the image."""
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
# image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)s
text_token = clip.tokenize(texts).to(device)
image = preprocess(Image.open(BytesIO(image_bytes))).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text_token)
logits_per_image, logits_per_text = model(image,text_token)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
word_dict = {'image':{},'text':{}}
### text
for i,text in enumerate(texts):
word_dict['text'][text] = text_features[i].cpu().numpy()
### iamge
for i,img in enumerate(image):
word_dict['image'][img] = image_features[i].cpu().numpy()
###################### PCA of embeddings ########################
## pca of text
tu,ts,tv = torch.pca_lowrank(text_features,center=True)
text_pca = torch.matmul(text_features,tv[:,:3])
### pca of image
imgu,imgs,imgv = torch.pca_lowrank(image_features,center=True)
image_pca = torch.matmul(image_features,imgv[:,:3])
# return word_dict
print(text_pca.shape,image_pca.shape)
return text_pca,image_pca
def PCA(img_emb, text_emb,n_components = 3):
x = torch.tensor([[1.,2.,3.,7.],[4.,5.,3.,6.],[7.,9.,8.,9.],[11.,13.,17.,11.]])
# plz change data type to float or complex
print(x.shape)
u,s,v = torch.pca_lowrank(x,q=None, center=False,niter=2)
u.shape,s.shape,v.shape
u@torch.diag(s)@v.T
# torch.matmul(x,v[:,:3])
pass
# NODE type
# PCA type.
# ELSE type.
demo = gr.Interface(
fn=democlip,
# inputs = [gr.Image(),gr.Textbox(lable='input prediction')],
inputs = ['text',gr.Textbox(label='input prediction')],
# outputs='label'
outputs = [gr.Textbox(label='text pca Box'),gr.Textbox(label='image pca Box')]
)
demo.launch()