Soumen's picture
Update app.py
a2c3102
raw
history blame
7.13 kB
"""
#App: NLP App with Streamlit
Description
This is a Natural Language Processing(NLP) base Application that is useful for
Document/Text Summarization from Bangla images and English Images/PDF files.
"""
# Core Pkgs
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
#os.system('sudo apt-get install tesseract-ocr-eng')
#os.system('sudo apt-get install tesseract-ocr-ben')
#os.system('wget https://github.com/tesseract-ocr/tessdata/raw/main/ben.traineddata')
#os.system('gunzip ben.traineddata.gz ')
#os.system('sudo mv -v ben.traineddata /usr/local/share/tessdata/')
#os.system('pip install -q pytesseract')
#os.system('conda install -c conda-forge poppler')
import streamlit as st
st.set_page_config(page_title="Summarization Tool", layout="wide", initial_sidebar_state="expanded")
import torch
import docx2txt
from PIL import Image
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
import tempfile
#from PyPDF2 import PdfFileReader
from pdf2image import convert_from_bytes
import pdfplumber
#from line_cor import mark_region
import pdf2image
import requests
import cv2
import numpy as np
import pytesseract
import line_cor
import altair as alt
#pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
from PIL import Image
API_URL0 = "https://api-inference.huggingface.co/models/csebuetnlp/mT5_multilingual_XLSum"
headers0 = {"Authorization": "Bearer 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"}
API_URL1 = "https://api-inference.huggingface.co/models/Michael-Vptn/text-summarization-t5-base"
headers1 = {"Authorization": "Bearer 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"}
API_URL2 = "https://api-inference.huggingface.co/models/gpt2"
headers2 = {"Authorization": "Bearer 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"}
# def read_pdf(file):
# # images=pdf2image.convert_from_path(file)
# # # print(type(images))
# pdfReader = PdfFileReader(file)
# count = pdfReader.numPages
# all_page_text = " "
# for i in range(count):
# page = pdfReader.getPage(i)
# all_page_text += page.extractText()+" "
# return all_page_text
def read_pdf_with_pdfplumber(file):
# Open the uploaded PDF file with pdfplumber
with pdfplumber.open(file) as pdf:
extracted_text = ''
for page in pdf.pages:
extracted_text += page.extract_text()
# Display the extracted text
#st.text(extracted_text)
return extracted_text
def engsum(output):
def query(payload):
response = requests.post(API_URL1, headers=headers1, json=payload)
return response.json()
out = query({
"inputs": output,
"min_length":300
})
if isinstance(out, list) and out[0].get("generated_text"):
text_output = out[0]["generated_text"]
st.success(text_output)
def bansum(text):
def query(payload):
response = requests.post(API_URL0, headers=headers0, json=payload)
return response.json()
out = query({"inputs": text, "min_length":300})
if isinstance(out, list) and out[0].get("summary_text"):
text_output = out[0]["summary_text"]
st.success(text_output)
st.title("Bangla and English Summarizer:")
#st.subheader("Input texts to summarize: ")
#@st.cache_resource(experimental_allow_widgets=True)
def main():
""" NLP Based Application with Streamlit """
def change_photo_state():
st.session_state["photo"]="done"
message = st.sidebar.text_input("Type your text here!")
uploaded_photo = st.sidebar.file_uploader("Upload your Images/PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
camera_photo = st.sidebar.camera_input("Capture a photo to summarize: ", on_change=change_photo_state)
if "photo" not in st.session_state:
st.session_state["photo"]="not done"
if st.session_state["photo"]=="done" or message:
if uploaded_photo and uploaded_photo.type=='application/pdf':
text=[]
loader = None
#tet = read_pdf(uploaded_photo)
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(uploaded_photo.read())
temp_file_path = temp_file.name
loader = PyPDFLoader(temp_file_path)
if loader:
text.extend(loader.load())
os.remove(temp_file_path)
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
text_chunks = text_splitter.split_documents(text)
# values = st.slider('Select a approximate number of lines to see and summarize',value=[0, len(tet)//(7*100)])
#text = tet[values[0]*7*10:values[1]*7*100] if values[0]!=len(tet)//(7*100) else tet[len(tet)//(7*100):]
st.text("Selected text for summarize: ")
# if st.button("BENGALI"):
# st.success(text)
# st.text("Summarized text: ")
# bansum(text)
#if st.button("ENGLISH"):
st.success(type(text_chunks))
st.success(text_chunks[0])
st.text("Summarized text: ")
engsum(text_chunks[0])
elif uploaded_photo and uploaded_photo.type !='application/pdf':
text=None
img = Image.open(uploaded_photo)
img = img.save("img.png")
img = cv2.imread("img.png")
st.text("Select the summarization type:")
if st.button("BENGALI"):
text = pytesseract.image_to_string(img, lang="ben")
bansum(text)
if st.button("ENGLISH"):
text=pytesseract.image_to_string(img)
engsum(text)
#st.success(text)
elif camera_photo:
text=None
img = Image.open(camera_photo)
img = img.save("img.png")
img = cv2.imread("img.png")
#text = pytesseract.image_to_string(img) if st.checkbox("Bangla") else pytesseract.image_to_string(img, lang="ben")
st.text("Select the summarization type:")
if st.button("Bangla"):
text = pytesseract.image_to_string(img, lang="ben")
bansum(text)
if st.button("English"):
text=pytesseract.image_to_string(img)
engsum(text)
else:
text=None
text = message
if st.button("Bangla"):
bansum(text)
if st.button("English"):
engsum(text)
# if st.button("English Text Generation"):
# def query(payload):
# response = requests.post(API_URL2, headers=headers2, json=payload)
# return response.json()
# out = query({
# "inputs": text,
# })
# if isinstance(out, list) and out[0].get("generated_text"):
# text_output = out[0]["generated_text"]
# st.success(text_output)
# #text=text_output
if __name__ == '__main__':
main()