Update app.py
Browse files
app.py
CHANGED
@@ -20,10 +20,7 @@ st.set_page_config(page_title="Summarization Tool", layout="wide", initial_sideb
|
|
20 |
import torch
|
21 |
import docx2txt
|
22 |
from PIL import Image
|
23 |
-
from
|
24 |
-
from langchain.text_splitter import CharacterTextSplitter
|
25 |
-
import tempfile
|
26 |
-
#from PyPDF2 import PdfFileReader
|
27 |
from pdf2image import convert_from_bytes
|
28 |
import pdfplumber
|
29 |
#from line_cor import mark_region
|
@@ -43,26 +40,26 @@ headers1 = {"Authorization": "Bearer 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"}
|
|
43 |
API_URL2 = "https://api-inference.huggingface.co/models/gpt2"
|
44 |
headers2 = {"Authorization": "Bearer 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"}
|
45 |
|
46 |
-
|
47 |
-
#
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
def read_pdf_with_pdfplumber(file):
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
67 |
def engsum(output):
|
68 |
def query(payload):
|
@@ -99,31 +96,24 @@ def main():
|
|
99 |
st.session_state["photo"]="not done"
|
100 |
if st.session_state["photo"]=="done" or message:
|
101 |
if uploaded_photo and uploaded_photo.type=='application/pdf':
|
102 |
-
|
103 |
-
|
104 |
-
#
|
105 |
-
|
106 |
-
temp_file.write(uploaded_photo.read())
|
107 |
-
temp_file_path = temp_file.name
|
108 |
|
109 |
-
loader = PyPDFLoader(temp_file_path)
|
110 |
-
if loader:
|
111 |
-
|
112 |
-
|
113 |
-
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
|
114 |
-
text_chunks = text_splitter.split_documents(text)
|
115 |
-
|
116 |
-
|
117 |
st.text("Selected text for summarize: ")
|
118 |
-
#
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
#if st.button("ENGLISH"):
|
123 |
-
st.success(type(text_chunks))
|
124 |
-
st.success(text_chunks[0])
|
125 |
-
st.text("Summarized text: ")
|
126 |
-
engsum(text_chunks[0])
|
127 |
|
128 |
elif uploaded_photo and uploaded_photo.type !='application/pdf':
|
129 |
text=None
|
|
|
20 |
import torch
|
21 |
import docx2txt
|
22 |
from PIL import Image
|
23 |
+
from PyPDF2 import PdfFileReader
|
|
|
|
|
|
|
24 |
from pdf2image import convert_from_bytes
|
25 |
import pdfplumber
|
26 |
#from line_cor import mark_region
|
|
|
40 |
API_URL2 = "https://api-inference.huggingface.co/models/gpt2"
|
41 |
headers2 = {"Authorization": "Bearer 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"}
|
42 |
|
43 |
+
def read_pdf(file):
|
44 |
+
# images=pdf2image.convert_from_path(file)
|
45 |
+
# # print(type(images))
|
46 |
+
pdfReader = PdfFileReader(file)
|
47 |
+
count = pdfReader.numPages
|
48 |
+
all_page_text = " "
|
49 |
+
for i in range(count):
|
50 |
+
page = pdfReader.getPage(i)
|
51 |
+
all_page_text += page.extractText()+" "
|
52 |
+
return all_page_text
|
53 |
+
# def read_pdf_with_pdfplumber(file):
|
54 |
+
# # Open the uploaded PDF file with pdfplumber
|
55 |
+
# with pdfplumber.open(file) as pdf:
|
56 |
+
# extracted_text = ''
|
57 |
+
# for page in pdf.pages:
|
58 |
+
# extracted_text += page.extract_text()
|
59 |
|
60 |
+
# # Display the extracted text
|
61 |
+
# #st.text(extracted_text)
|
62 |
+
# return extracted_text
|
63 |
|
64 |
def engsum(output):
|
65 |
def query(payload):
|
|
|
96 |
st.session_state["photo"]="not done"
|
97 |
if st.session_state["photo"]=="done" or message:
|
98 |
if uploaded_photo and uploaded_photo.type=='application/pdf':
|
99 |
+
tet = read_pdf(uploaded_photo)
|
100 |
+
# with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
101 |
+
# temp_file.write(uploaded_photo.read())
|
102 |
+
# temp_file_path = temp_file.name
|
|
|
|
|
103 |
|
104 |
+
# loader = PyPDFLoader(temp_file_path)
|
105 |
+
# if loader:
|
106 |
+
# text.extend(loader.load())
|
107 |
+
# os.remove(temp_file_path)
|
108 |
+
# text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
|
109 |
+
# text_chunks = text_splitter.split_documents(text)
|
110 |
+
values = st.slider('Select a approximate number of lines to see and summarize',value=[0, len(tet)//(7*100)])
|
111 |
+
text = tet[values[0]*7*10:values[1]*10*100] if values[0]!=len(tet)//(10*100) else tet[len(tet)//(10*100):]
|
112 |
st.text("Selected text for summarize: ")
|
113 |
+
#st.success(type(text_chunks))
|
114 |
+
st.success(text)
|
115 |
+
st.text("Summarized Text: ")
|
116 |
+
engsum(text)
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
elif uploaded_photo and uploaded_photo.type !='application/pdf':
|
119 |
text=None
|