Soumen commited on
Commit
2c22d61
·
1 Parent(s): 0779299

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -42,7 +42,7 @@ import pdf2image
42
  # NLP Pkgs
43
  from textblob import TextBlob
44
  import spacy
45
- from gensim.summarize import summarize
46
  import requests
47
  import cv2
48
  import numpy as np
@@ -114,14 +114,14 @@ def main():
114
  + Tokenization(POS tagging) & Lemmatization(root mean) using Spacy
115
  + Named Entity Recognition(NER)/Trigger word detection using SpaCy
116
  + Sentiment Analysis using TextBlob
117
- + Document/Text Summarization using Gensim/T5 both for Bangla Extractive and English Abstractive.
118
  """)
119
  def change_photo_state():
120
  st.session_state["photo"]="done"
121
  st.subheader("Please, feed your image/text, features/services will appear automatically!")
122
  message = st.text_input("Type your text here!")
123
- camera_photo = st.camera_input("Take a photo, Containing English or Bangla texts", on_change=change_photo_state)
124
- uploaded_photo = st.file_uploader("Upload Bangla or English Image/ English PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
125
  if "photo" not in st.session_state:
126
  st.session_state["photo"]="not done"
127
  if st.session_state["photo"]=="done" or message:
@@ -178,13 +178,13 @@ def main():
178
  st.text("Using Hugging Face Transformer, Contrastive Search ..")
179
  output = model.generate(input_ids, max_length=128)
180
  st.success(tokenizer.decode(output[0], skip_special_tokens=True))
181
- if st.checkbox("Mark here, Text Summarization for English or Bangla!"):
182
- st.subheader("Summarize Your Text for English and Bangla Texts!")
183
- message = st.text_area("Enter the Text","Type please ..")
184
- st.text("Using Gensim Summarizer ..")
185
- st.success(message)
186
- summary_result = summarize(text)
187
- st.success(summary_result)
188
  if st.checkbox("Mark to better English Text Summarization!"):
189
  #st.title("Summarize Your Text for English only!")
190
  tokenizer = AutoTokenizer.from_pretrained('t5-base')
 
42
  # NLP Pkgs
43
  from textblob import TextBlob
44
  import spacy
45
+ #from gensim.summarization import summarize
46
  import requests
47
  import cv2
48
  import numpy as np
 
114
  + Tokenization(POS tagging) & Lemmatization(root mean) using Spacy
115
  + Named Entity Recognition(NER)/Trigger word detection using SpaCy
116
  + Sentiment Analysis using TextBlob
117
+ + Document/Text Summarization using T5 for English Abstractive.
118
  """)
119
  def change_photo_state():
120
  st.session_state["photo"]="done"
121
  st.subheader("Please, feed your image/text, features/services will appear automatically!")
122
  message = st.text_input("Type your text here!")
123
+ camera_photo = st.camera_input("Take a photo, Containing English texts", on_change=change_photo_state)
124
+ uploaded_photo = st.file_uploader("Upload your PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
125
  if "photo" not in st.session_state:
126
  st.session_state["photo"]="not done"
127
  if st.session_state["photo"]=="done" or message:
 
178
  st.text("Using Hugging Face Transformer, Contrastive Search ..")
179
  output = model.generate(input_ids, max_length=128)
180
  st.success(tokenizer.decode(output[0], skip_special_tokens=True))
181
+ # if st.checkbox("Mark here, Text Summarization for English or Bangla!"):
182
+ # st.subheader("Summarize Your Text for English and Bangla Texts!")
183
+ # message = st.text_area("Enter the Text","Type please ..")
184
+ # st.text("Using Gensim Summarizer ..")
185
+ # st.success(message)
186
+ # summary_result = summarize(text)
187
+ # st.success(summary_result)
188
  if st.checkbox("Mark to better English Text Summarization!"):
189
  #st.title("Summarize Your Text for English only!")
190
  tokenizer = AutoTokenizer.from_pretrained('t5-base')