Soumen commited on
Commit
6b10636
·
1 Parent(s): 6c36f95

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -52,8 +52,9 @@ import line_cor
52
  import altair as alt
53
  #pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
54
  from PIL import Image
55
- @st.experimental_singleton
56
  #@st.cache_resource(experimental_allow_widgets=True)
 
57
  def read_pdf(file):
58
  # images=pdf2image.convert_from_path(file)
59
  # # print(type(images))
@@ -87,8 +88,9 @@ def read_pdf(file):
87
  # all_page_text += text + " " #page.extractText()
88
  # return all_page_text
89
  st.title("NLP APPLICATION")
90
- @st.experimental_singleton
91
  #@st.cache_resource(experimental_allow_widgets=True)
 
92
  def text_analyzer(my_text):
93
  nlp = spacy.load('en_core_web_sm')
94
  docx = nlp(my_text)
@@ -102,8 +104,9 @@ def load_models():
102
  model = GPT2LMHeadModel.from_pretrained('gpt2-large')
103
  return tokenizer, model
104
  # Function For Extracting Entities
105
- @st.experimental_singleton
106
  #@st.cache_resource(experimental_allow_widgets=True)
 
107
  def entity_analyzer(my_text):
108
  nlp = spacy.load('en_core_web_sm')
109
  docx = nlp(my_text)
@@ -125,8 +128,8 @@ def main():
125
  st.session_state["photo"]="done"
126
  st.subheader("Please, feed your image/text, features/services will appear automatically!")
127
  message = st.text_input("Type your text here!")
128
- camera_photo = st.camera_input("Take a photo, Containing English texts", on_change=change_photo_state)
129
  uploaded_photo = st.file_uploader("Upload your PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
 
130
  if "photo" not in st.session_state:
131
  st.session_state["photo"]="not done"
132
  if st.session_state["photo"]=="done" or message:
 
52
  import altair as alt
53
  #pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
54
  from PIL import Image
55
+ #@st.experimental_singleton
56
  #@st.cache_resource(experimental_allow_widgets=True)
57
+ @st.cache_data
58
  def read_pdf(file):
59
  # images=pdf2image.convert_from_path(file)
60
  # # print(type(images))
 
88
  # all_page_text += text + " " #page.extractText()
89
  # return all_page_text
90
  st.title("NLP APPLICATION")
91
+ #@st.experimental_singleton
92
  #@st.cache_resource(experimental_allow_widgets=True)
93
+ @st.cache_data
94
  def text_analyzer(my_text):
95
  nlp = spacy.load('en_core_web_sm')
96
  docx = nlp(my_text)
 
104
  model = GPT2LMHeadModel.from_pretrained('gpt2-large')
105
  return tokenizer, model
106
  # Function For Extracting Entities
107
+ #@st.experimental_singleton
108
  #@st.cache_resource(experimental_allow_widgets=True)
109
+ @st.chache_data
110
  def entity_analyzer(my_text):
111
  nlp = spacy.load('en_core_web_sm')
112
  docx = nlp(my_text)
 
128
  st.session_state["photo"]="done"
129
  st.subheader("Please, feed your image/text, features/services will appear automatically!")
130
  message = st.text_input("Type your text here!")
 
131
  uploaded_photo = st.file_uploader("Upload your PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
132
+ camera_photo = st.camera_input("Take a photo, Containing English texts", on_change=change_photo_state)
133
  if "photo" not in st.session_state:
134
  st.session_state["photo"]="not done"
135
  if st.session_state["photo"]=="done" or message: