initial commit
Browse files- app.py +145 -0
- images.png +0 -0
- packages.txt +1 -0
- requirements.txt +16 -0
- scholarly_text.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
## App: NLP App with Streamlit
|
3 |
+
Credits: Streamlit Team,Marc Skov Madsen(For Awesome-streamlit gallery)
|
4 |
+
Description
|
5 |
+
This is a Natural Language Processing(NLP) Based App useful for basic NLP concepts such as follows;
|
6 |
+
|
7 |
+
+ Tokenization & Lemmatization using Spacy
|
8 |
+
|
9 |
+
+ Named Entity Recognition(NER) using SpaCy
|
10 |
+
|
11 |
+
+ Sentiment Analysis using TextBlob
|
12 |
+
|
13 |
+
+ Document/Text Summarization using Gensim/T5
|
14 |
+
|
15 |
+
This is built with Streamlit Framework, an awesome framework for building ML and NLP tools.
|
16 |
+
Purpose
|
17 |
+
To perform basic and useful NLP task with Streamlit, Spacy, Textblob and Gensim
|
18 |
+
"""
|
19 |
+
# Core Pkgs
|
20 |
+
import streamlit as st
|
21 |
+
import os
|
22 |
+
import torch
|
23 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
24 |
+
|
25 |
+
# NLP Pkgs
|
26 |
+
from textblob import TextBlob
|
27 |
+
import spacy
|
28 |
+
from gensim.summarization import summarize
|
29 |
+
import requests
|
30 |
+
import cv2
|
31 |
+
import numpy as np
|
32 |
+
import pytesseract
|
33 |
+
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
34 |
+
from PIL import Image
|
35 |
+
# Function to Analyse Tokens and Lemma
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
37 |
+
model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
|
38 |
+
@st.cache
|
39 |
+
def text_analyzer(my_text):
|
40 |
+
nlp = spacy.load('en_core_web_sm')
|
41 |
+
docx = nlp(my_text)
|
42 |
+
# tokens = [ token.text for token in docx]
|
43 |
+
allData = [('"Token":{},\n"Lemma":{}'.format(token.text,token.lemma_))for token in docx ]
|
44 |
+
return allData
|
45 |
+
|
46 |
+
# Function For Extracting Entities
|
47 |
+
@st.cache
|
48 |
+
def entity_analyzer(my_text):
|
49 |
+
nlp = spacy.load('en_core_web_sm')
|
50 |
+
docx = nlp(my_text)
|
51 |
+
tokens = [ token.text for token in docx]
|
52 |
+
entities = [(entity.text,entity.label_)for entity in docx.ents]
|
53 |
+
allData = ['"Token":{},\n"Entities":{}'.format(tokens,entities)]
|
54 |
+
return allData
|
55 |
+
|
56 |
+
|
57 |
+
def main():
|
58 |
+
""" NLP Based App with Streamlit """
|
59 |
+
|
60 |
+
# Title
|
61 |
+
st.title("Streamlit NLP APP")
|
62 |
+
st.markdown("""
|
63 |
+
#### Description
|
64 |
+
+ This is a Natural Language Processing(NLP) Based App useful for basic NLP task
|
65 |
+
NER,Sentiment, Spell Corrections and Summarization
|
66 |
+
""")
|
67 |
+
|
68 |
+
|
69 |
+
# Entity Extraction
|
70 |
+
if st.checkbox("Show Named Entities"):
|
71 |
+
st.subheader("Analyze Your Text")
|
72 |
+
|
73 |
+
message = st.text_area("Enter your Text","Typing Here ..")
|
74 |
+
if st.button("Extract"):
|
75 |
+
entity_result = entity_analyzer(message)
|
76 |
+
st.json(entity_result)
|
77 |
+
|
78 |
+
# Sentiment Analysis
|
79 |
+
elif st.checkbox("Show Sentiment Analysis"):
|
80 |
+
st.subheader("Analyse Your Text")
|
81 |
+
message = st.text_area("Enter Text plz","Type Here .")
|
82 |
+
if st.button("Analyze"):
|
83 |
+
blob = TextBlob(message)
|
84 |
+
result_sentiment = blob.sentiment
|
85 |
+
st.success(result_sentiment)
|
86 |
+
#Text Corrections
|
87 |
+
elif st.checkbox("Spell Corrections"):
|
88 |
+
st.subheader("Correct Your Text")
|
89 |
+
message = st.text_area("Enter the Text","Type please ..")
|
90 |
+
if st.button("Spell Corrections"):
|
91 |
+
st.text("Using TextBlob ..")
|
92 |
+
st.success(TextBlob(message).correct())
|
93 |
+
def change_photo_state():
|
94 |
+
st.session_state["photo"]="done"
|
95 |
+
st.subheader("Summary section, feed your image!")
|
96 |
+
camera_photo = st.camera_input("Take a photo", on_change=change_photo_state)
|
97 |
+
uploaded_photo = st.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
|
98 |
+
message = st.text_input("Or, drop your text here!")
|
99 |
+
if "photo" not in st.session_state:
|
100 |
+
st.session_state["photo"]="not done"
|
101 |
+
|
102 |
+
if st.session_state["photo"]=="done" or message:
|
103 |
+
if uploaded_photo:
|
104 |
+
img = Image.open(uploaded_photo)
|
105 |
+
img = img.save("img.png")
|
106 |
+
img = cv2.imread("img.png")
|
107 |
+
text = pytesseract.image_to_string(img)
|
108 |
+
st.success(text)
|
109 |
+
if camera_photo:
|
110 |
+
img = Image.open(camera_photo)
|
111 |
+
img = img.save("img.png")
|
112 |
+
img = cv2.imread("img.png")
|
113 |
+
text = pytesseract.image_to_string(img)
|
114 |
+
st.success(text)
|
115 |
+
if uploaded_photo==None and camera_photo==None:
|
116 |
+
#our_image=load_image("image.jpg")
|
117 |
+
#img = cv2.imread("scholarly_text.jpg")
|
118 |
+
text = message
|
119 |
+
# Summarization
|
120 |
+
if st.checkbox("Show Text Summarization Genism"):
|
121 |
+
st.subheader("Summarize Your Text")
|
122 |
+
#message = st.text_area("Enter the Text","Type please ..")
|
123 |
+
st.text("Using Gensim Summarizer ..")
|
124 |
+
#st.success(mess)
|
125 |
+
summary_result = summarize(text)
|
126 |
+
st.success(summary_result)
|
127 |
+
|
128 |
+
elif st.checkbox("Show Text Summarization T5"):
|
129 |
+
st.subheader("Summarize Your Text")
|
130 |
+
#message = st.text_area("Enter the Text","Type please ..")
|
131 |
+
st.text("Using Google T5 Transformer ..")
|
132 |
+
inputs = tokenizer.encode("summarize: " + text,
|
133 |
+
return_tensors='pt',
|
134 |
+
max_length=512,
|
135 |
+
truncation=True)
|
136 |
+
summary_ids = model.generate(inputs, max_length=150, min_length=80, length_penalty=5., num_beams=2)
|
137 |
+
summary = tokenizer.decode(summary_ids[0])
|
138 |
+
st.success(summary)
|
139 |
+
|
140 |
+
st.sidebar.subheader("About App")
|
141 |
+
st.sidebar.subheader("By")
|
142 |
+
st.sidebar.text("Soumen Sarker")
|
143 |
+
|
144 |
+
if __name__ == '__main__':
|
145 |
+
main()
|
images.png
ADDED
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
tesseract-ocr-all
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
nltk==3.6.5
|
4 |
+
wordnet
|
5 |
+
gensim==3.8.3
|
6 |
+
joblib==1.1.0
|
7 |
+
numpy==1.21.4
|
8 |
+
pandas==1.3.4
|
9 |
+
scikit-learn==1.0.1
|
10 |
+
spacy==3.2.0
|
11 |
+
streamlit==1.2.0
|
12 |
+
textblob==0.17.1
|
13 |
+
request
|
14 |
+
pytesseract
|
15 |
+
opencv-python
|
16 |
+
Pillow
|
scholarly_text.jpg
ADDED