Update app.py
Browse files
app.py
CHANGED
@@ -84,7 +84,7 @@ def read_pdf(file):
|
|
84 |
# text = pytesseract.image_to_string(image_name, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(image_name)
|
85 |
# all_page_text += text + " " #page.extractText()
|
86 |
# return all_page_text
|
87 |
-
st.title("
|
88 |
@st.experimental_singleton
|
89 |
def text_analyzer(my_text):
|
90 |
nlp = spacy.load('en_core_web_sm')
|
@@ -151,13 +151,13 @@ def main():
|
|
151 |
#ret,thresh1 = cv2.threshold(imge,120,255,cv2.THRESH_BINARY)
|
152 |
# pytesseract image to string to get results
|
153 |
#text = str(pytesseract.image_to_string(img, config='--psm 6',lang="ben")) if st.checkbox("Bangla") else str(pytesseract.image_to_string(thresh1, config='--psm 6'))
|
154 |
-
text = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else
|
155 |
st.success(text)
|
156 |
elif camera_photo:
|
157 |
img = Image.open(camera_photo)
|
158 |
img = img.save("img.png")
|
159 |
img = cv2.imread("img.png")
|
160 |
-
text = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(img)
|
161 |
st.success(text)
|
162 |
elif uploaded_photo==None and camera_photo==None:
|
163 |
#our_image=load_image("image.jpg")
|
@@ -185,7 +185,7 @@ def main():
|
|
185 |
# st.success(message)
|
186 |
# summary_result = summarize(text)
|
187 |
# st.success(summary_result)
|
188 |
-
if st.checkbox("Mark to
|
189 |
#st.title("Summarize Your Text for English only!")
|
190 |
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
191 |
model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
|
|
|
84 |
# text = pytesseract.image_to_string(image_name, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(image_name)
|
85 |
# all_page_text += text + " " #page.extractText()
|
86 |
# return all_page_text
|
87 |
+
st.title("NLP APPLICATION")
|
88 |
@st.experimental_singleton
|
89 |
def text_analyzer(my_text):
|
90 |
nlp = spacy.load('en_core_web_sm')
|
|
|
151 |
#ret,thresh1 = cv2.threshold(imge,120,255,cv2.THRESH_BINARY)
|
152 |
# pytesseract image to string to get results
|
153 |
#text = str(pytesseract.image_to_string(img, config='--psm 6',lang="ben")) if st.checkbox("Bangla") else str(pytesseract.image_to_string(thresh1, config='--psm 6'))
|
154 |
+
text = pytesseract.image_to_string(img) #pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else
|
155 |
st.success(text)
|
156 |
elif camera_photo:
|
157 |
img = Image.open(camera_photo)
|
158 |
img = img.save("img.png")
|
159 |
img = cv2.imread("img.png")
|
160 |
+
text = pytesseract.image_to_string(img) #pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(img)
|
161 |
st.success(text)
|
162 |
elif uploaded_photo==None and camera_photo==None:
|
163 |
#our_image=load_image("image.jpg")
|
|
|
185 |
# st.success(message)
|
186 |
# summary_result = summarize(text)
|
187 |
# st.success(summary_result)
|
188 |
+
if st.checkbox("Mark to English Text Summarization!"):
|
189 |
#st.title("Summarize Your Text for English only!")
|
190 |
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
191 |
model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
|