Spaces:
Runtime error
Runtime error
SoybeanMilk
commited on
Commit
·
c27a2cb
1
Parent(s):
90d4f1f
Delete translationModel.py
Browse files- translationModel.py +0 -259
translationModel.py
DELETED
@@ -1,259 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import warnings
|
3 |
-
import huggingface_hub
|
4 |
-
import requests
|
5 |
-
import torch
|
6 |
-
|
7 |
-
import ctranslate2
|
8 |
-
import transformers
|
9 |
-
|
10 |
-
import re
|
11 |
-
|
12 |
-
from typing import Optional
|
13 |
-
from src.config import ModelConfig
|
14 |
-
from src.translation.translationLangs import TranslationLang, get_lang_from_whisper_code
|
15 |
-
from peft import PeftModel
|
16 |
-
|
17 |
-
class TranslationModel:
|
18 |
-
def __init__(
|
19 |
-
self,
|
20 |
-
modelConfig: ModelConfig,
|
21 |
-
device: str = None,
|
22 |
-
whisperLang: TranslationLang = None,
|
23 |
-
translationLang: TranslationLang = None,
|
24 |
-
batchSize: int = 2,
|
25 |
-
noRepeatNgramSize: int = 3,
|
26 |
-
numBeams: int = 2,
|
27 |
-
downloadRoot: Optional[str] = None,
|
28 |
-
localFilesOnly: bool = False,
|
29 |
-
loadModel: bool = False,
|
30 |
-
):
|
31 |
-
"""Initializes the M2M100 / Nllb-200 / mt5 model.
|
32 |
-
|
33 |
-
Args:
|
34 |
-
modelConfig: Config of the model to use (distilled-600M, distilled-1.3B,
|
35 |
-
1.3B, 3.3B...) or a path to a converted
|
36 |
-
model directory. When a size is configured, the converted model is downloaded
|
37 |
-
from the Hugging Face Hub.
|
38 |
-
device: Device to use for computation (cpu, cuda, ipu, xpu, mkldnn, opengl, opencl,
|
39 |
-
ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia).
|
40 |
-
device_index: Device ID to use.
|
41 |
-
The model can also be loaded on multiple GPUs by passing a list of IDs
|
42 |
-
(e.g. [0, 1, 2, 3]). In that case, multiple transcriptions can run in parallel
|
43 |
-
when transcribe() is called from multiple Python threads (see also num_workers).
|
44 |
-
compute_type: Type to use for computation.
|
45 |
-
See https://opennmt.net/CTranslate2/quantization.html.
|
46 |
-
cpu_threads: Number of threads to use when running on CPU (4 by default).
|
47 |
-
A non zero value overrides the OMP_NUM_THREADS environment variable.
|
48 |
-
num_workers: When transcribe() is called from multiple Python threads,
|
49 |
-
having multiple workers enables true parallelism when running the model
|
50 |
-
(concurrent calls to self.model.generate() will run in parallel).
|
51 |
-
This can improve the global throughput at the cost of increased memory usage.
|
52 |
-
downloadRoot: Directory where the models should be saved. If not set, the models
|
53 |
-
are saved in the standard Hugging Face cache directory.
|
54 |
-
localFilesOnly: If True, avoid downloading the file and return the path to the
|
55 |
-
local cached file if it exists.
|
56 |
-
"""
|
57 |
-
self.modelConfig = modelConfig
|
58 |
-
self.whisperLang = whisperLang # self.translationLangWhisper = get_lang_from_whisper_code(whisperLang.code.lower() if whisperLang is not None else "en")
|
59 |
-
self.translationLang = translationLang
|
60 |
-
|
61 |
-
if translationLang is None:
|
62 |
-
return
|
63 |
-
|
64 |
-
self.batchSize = batchSize
|
65 |
-
self.noRepeatNgramSize = noRepeatNgramSize
|
66 |
-
self.numBeams = numBeams
|
67 |
-
|
68 |
-
if os.path.isdir(modelConfig.url):
|
69 |
-
self.modelPath = modelConfig.url
|
70 |
-
else:
|
71 |
-
self.modelPath = download_model(
|
72 |
-
modelConfig,
|
73 |
-
localFilesOnly=localFilesOnly,
|
74 |
-
cacheDir=downloadRoot,
|
75 |
-
)
|
76 |
-
|
77 |
-
if device is None:
|
78 |
-
if torch.cuda.is_available():
|
79 |
-
device = "cuda" if "ct2" in self.modelPath else "cuda:0"
|
80 |
-
else:
|
81 |
-
device = "cpu"
|
82 |
-
|
83 |
-
self.device = device
|
84 |
-
|
85 |
-
if loadModel:
|
86 |
-
self.load_model()
|
87 |
-
|
88 |
-
def load_model(self):
|
89 |
-
print('\n\nLoading model: %s\n\n' % self.modelPath)
|
90 |
-
if "ct2" in self.modelPath:
|
91 |
-
if "nllb" in self.modelPath:
|
92 |
-
self.transTokenizer = transformers.AutoTokenizer.from_pretrained(self.modelConfig.tokenizer_url if self.modelConfig.tokenizer_url is not None and len(self.modelConfig.tokenizer_url) > 0 else self.modelPath, src_lang=self.whisperLang.nllb.code)
|
93 |
-
self.targetPrefix = [self.translationLang.nllb.code]
|
94 |
-
elif "m2m100" in self.modelPath:
|
95 |
-
self.transTokenizer = transformers.AutoTokenizer.from_pretrained(self.modelConfig.tokenizer_url if self.modelConfig.tokenizer_url is not None and len(self.modelConfig.tokenizer_url) > 0 else self.modelPath, src_lang=self.whisperLang.m2m100.code)
|
96 |
-
self.targetPrefix = [self.transTokenizer.lang_code_to_token[self.translationLang.m2m100.code]]
|
97 |
-
self.transModel = ctranslate2.Translator(self.modelPath, compute_type="auto", device=self.device)
|
98 |
-
|
99 |
-
elif "mt5" in self.modelPath:
|
100 |
-
self.mt5Prefix = self.whisperLang.whisper.code + "2" + self.translationLang.whisper.code + ": "
|
101 |
-
self.transTokenizer = transformers.T5Tokenizer.from_pretrained(self.modelPath, legacy=False) #requires spiece.model
|
102 |
-
self.transModel = transformers.MT5ForConditionalGeneration.from_pretrained(self.modelPath)
|
103 |
-
self.transTranslator = transformers.pipeline('text2text-generation', model=self.transModel, device=self.device, tokenizer=self.transTokenizer)
|
104 |
-
elif "ALMA" in self.modelPath:
|
105 |
-
self.ALMAPrefix = "Translate this from " + self.whisperLang.whisper.code + " to " + self.translationLang.whisper.code + ":" + self.whisperLang.whisper.code + ":"
|
106 |
-
self.transTokenizer = transformers.AutoTokenizer.from_pretrained(self.modelPath, use_fast=True)
|
107 |
-
self.transModel = transformers.AutoModelForCausalLM.from_pretrained(self.modelPath, device_map="auto", trust_remote_code=False, revision="main")
|
108 |
-
self.transTranslator = transformers.pipeline("text-generation", model=self.transModel, tokenizer=self.transTokenizer, batch_size=2, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1)
|
109 |
-
else:
|
110 |
-
self.transTokenizer = transformers.AutoTokenizer.from_pretrained(self.modelPath)
|
111 |
-
self.transModel = transformers.AutoModelForSeq2SeqLM.from_pretrained(self.modelPath)
|
112 |
-
if "m2m100" in self.modelPath:
|
113 |
-
self.transTranslator = transformers.pipeline('translation', model=self.transModel, device=self.device, tokenizer=self.transTokenizer, src_lang=self.whisperLang.m2m100.code, tgt_lang=self.translationLang.m2m100.code)
|
114 |
-
else: #NLLB
|
115 |
-
self.transTranslator = transformers.pipeline('translation', model=self.transModel, device=self.device, tokenizer=self.transTokenizer, src_lang=self.whisperLang.nllb.code, tgt_lang=self.translationLang.nllb.code)
|
116 |
-
|
117 |
-
def release_vram(self):
|
118 |
-
try:
|
119 |
-
if torch.cuda.is_available():
|
120 |
-
if "ct2" not in self.modelPath:
|
121 |
-
device = torch.device("cpu")
|
122 |
-
self.transModel.to(device)
|
123 |
-
del self.transModel
|
124 |
-
torch.cuda.empty_cache()
|
125 |
-
print("release vram end.")
|
126 |
-
except Exception as e:
|
127 |
-
print("Error release vram: " + str(e))
|
128 |
-
|
129 |
-
|
130 |
-
def translation(self, text: str, max_length: int = 400):
|
131 |
-
output = None
|
132 |
-
result = None
|
133 |
-
try:
|
134 |
-
if "ct2" in self.modelPath:
|
135 |
-
source = self.transTokenizer.convert_ids_to_tokens(self.transTokenizer.encode(text))
|
136 |
-
output = self.transModel.translate_batch([source], target_prefix=[self.targetPrefix], max_batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, beam_size=self.numBeams)
|
137 |
-
target = output[0].hypotheses[0][1:]
|
138 |
-
result = self.transTokenizer.decode(self.transTokenizer.convert_tokens_to_ids(target))
|
139 |
-
elif "mt5" in self.modelPath:
|
140 |
-
output = self.transTranslator(self.mt5Prefix + text, max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams) #, num_return_sequences=2
|
141 |
-
result = output[0]['generated_text']
|
142 |
-
elif "ALMA" in self.modelPath:
|
143 |
-
output = self.transTranslator(self.ALMAPrefix + text + self.translationLang.whisper.code + ":", max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams)
|
144 |
-
result = output[0]['generated_text']
|
145 |
-
result = re.sub(rf'^(.*{self.translationLang.whisper.code}: )', '', result) # Remove the prompt from the result
|
146 |
-
result = re.sub(rf'^(Translate this from .* to .*:)', '', result) # Remove the translation instruction
|
147 |
-
return result.strip()
|
148 |
-
else: #M2M100 & NLLB
|
149 |
-
output = self.transTranslator(text, max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams)
|
150 |
-
result = output[0]['translation_text']
|
151 |
-
except Exception as e:
|
152 |
-
print("Error translation text: " + str(e))
|
153 |
-
|
154 |
-
return result
|
155 |
-
|
156 |
-
|
157 |
-
_MODELS = ["distilled-600M", "distilled-1.3B", "1.3B", "3.3B",
|
158 |
-
"ct2fast-nllb-200-distilled-1.3B-int8_float16",
|
159 |
-
"ct2fast-nllb-200-3.3B-int8_float16",
|
160 |
-
"nllb-200-3.3B-ct2-float16", "nllb-200-1.3B-ct2", "nllb-200-1.3B-ct2-int8", "nllb-200-1.3B-ct2-float16",
|
161 |
-
"nllb-200-distilled-1.3B-ct2", "nllb-200-distilled-1.3B-ct2-int8", "nllb-200-distilled-1.3B-ct2-float16",
|
162 |
-
"nllb-200-distilled-600M-ct2", "nllb-200-distilled-600M-ct2-int8", "nllb-200-distilled-600M-ct2-float16",
|
163 |
-
"m2m100_1.2B-ct2", "m2m100_418M-ct2", "m2m100-12B-ct2",
|
164 |
-
"m2m100_1.2B", "m2m100_418M",
|
165 |
-
"mt5-zh-ja-en-trimmed",
|
166 |
-
"mt5-zh-ja-en-trimmed-fine-tuned-v1",
|
167 |
-
"ALMA-13B-GPTQ"]
|
168 |
-
|
169 |
-
def check_model_name(name):
|
170 |
-
return any(allowed_name in name for allowed_name in _MODELS)
|
171 |
-
|
172 |
-
def download_model(
|
173 |
-
modelConfig: ModelConfig,
|
174 |
-
outputDir: Optional[str] = None,
|
175 |
-
localFilesOnly: bool = False,
|
176 |
-
cacheDir: Optional[str] = None,
|
177 |
-
):
|
178 |
-
""""download_model" is referenced from the "utils.py" script
|
179 |
-
of the "faster_whisper" project, authored by guillaumekln.
|
180 |
-
|
181 |
-
Downloads a nllb-200 model from the Hugging Face Hub.
|
182 |
-
|
183 |
-
The model is downloaded from https://huggingface.co/facebook.
|
184 |
-
|
185 |
-
Args:
|
186 |
-
modelConfig: config of the model to download (facebook/nllb-distilled-600M,
|
187 |
-
facebook/nllb-distilled-1.3B, facebook/nllb-1.3B, facebook/nllb-3.3B...).
|
188 |
-
outputDir: Directory where the model should be saved. If not set, the model is saved in
|
189 |
-
the cache directory.
|
190 |
-
localFilesOnly: If True, avoid downloading the file and return the path to the local
|
191 |
-
cached file if it exists.
|
192 |
-
cacheDir: Path to the folder where cached files are stored.
|
193 |
-
|
194 |
-
Returns:
|
195 |
-
The path to the downloaded model.
|
196 |
-
|
197 |
-
Raises:
|
198 |
-
ValueError: if the model size is invalid.
|
199 |
-
"""
|
200 |
-
if not check_model_name(modelConfig.name):
|
201 |
-
raise ValueError(
|
202 |
-
"Invalid model name '%s', expected one of: %s" % (modelConfig.name, ", ".join(_MODELS))
|
203 |
-
)
|
204 |
-
|
205 |
-
repoId = modelConfig.url #"facebook/nllb-200-%s" %
|
206 |
-
|
207 |
-
allowPatterns = [
|
208 |
-
"config.json",
|
209 |
-
"generation_config.json",
|
210 |
-
"model.bin",
|
211 |
-
"pytorch_model.bin",
|
212 |
-
"pytorch_model.bin.index.json",
|
213 |
-
"pytorch_model-*.bin",
|
214 |
-
"pytorch_model-00001-of-00003.bin",
|
215 |
-
"pytorch_model-00002-of-00003.bin",
|
216 |
-
"pytorch_model-00003-of-00003.bin",
|
217 |
-
"sentencepiece.bpe.model",
|
218 |
-
"tokenizer.json",
|
219 |
-
"tokenizer_config.json",
|
220 |
-
"shared_vocabulary.txt",
|
221 |
-
"shared_vocabulary.json",
|
222 |
-
"special_tokens_map.json",
|
223 |
-
"spiece.model",
|
224 |
-
"vocab.json", #m2m100
|
225 |
-
"model.safetensors",
|
226 |
-
"quantize_config.json",
|
227 |
-
"tokenizer.model"
|
228 |
-
]
|
229 |
-
|
230 |
-
kwargs = {
|
231 |
-
"local_files_only": localFilesOnly,
|
232 |
-
"allow_patterns": allowPatterns,
|
233 |
-
#"tqdm_class": disabled_tqdm,
|
234 |
-
}
|
235 |
-
|
236 |
-
if outputDir is not None:
|
237 |
-
kwargs["local_dir"] = outputDir
|
238 |
-
kwargs["local_dir_use_symlinks"] = False
|
239 |
-
|
240 |
-
if cacheDir is not None:
|
241 |
-
kwargs["cache_dir"] = cacheDir
|
242 |
-
|
243 |
-
try:
|
244 |
-
return huggingface_hub.snapshot_download(repoId, **kwargs)
|
245 |
-
except (
|
246 |
-
huggingface_hub.utils.HfHubHTTPError,
|
247 |
-
requests.exceptions.ConnectionError,
|
248 |
-
) as exception:
|
249 |
-
warnings.warn(
|
250 |
-
"An error occured while synchronizing the model %s from the Hugging Face Hub:\n%s",
|
251 |
-
repoId,
|
252 |
-
exception,
|
253 |
-
)
|
254 |
-
warnings.warn(
|
255 |
-
"Trying to load the model directly from the local cache, if it exists."
|
256 |
-
)
|
257 |
-
|
258 |
-
kwargs["local_files_only"] = True
|
259 |
-
return huggingface_hub.snapshot_download(repoId, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|