|
"""This script defines the base network model for Deep3DFaceRecon_pytorch
|
|
"""
|
|
|
|
import os
|
|
import numpy as np
|
|
import torch
|
|
from collections import OrderedDict
|
|
from abc import ABC, abstractmethod
|
|
from . import networks
|
|
|
|
|
|
class BaseModel(ABC):
|
|
"""This class is an abstract base class (ABC) for models.
|
|
To create a subclass, you need to implement the following five functions:
|
|
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
|
|
-- <set_input>: unpack data from dataset and apply preprocessing.
|
|
-- <forward>: produce intermediate results.
|
|
-- <optimize_parameters>: calculate losses, gradients, and update network weights.
|
|
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
|
|
"""
|
|
|
|
def __init__(self, opt):
|
|
"""Initialize the BaseModel class.
|
|
|
|
Parameters:
|
|
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
|
|
|
|
When creating your custom class, you need to implement your own initialization.
|
|
In this fucntion, you should first call <BaseModel.__init__(self, opt)>
|
|
Then, you need to define four lists:
|
|
-- self.loss_names (str list): specify the training losses that you want to plot and save.
|
|
-- self.model_names (str list): specify the images that you want to display and save.
|
|
-- self.visual_names (str list): define networks used in our training.
|
|
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
|
|
"""
|
|
self.opt = opt
|
|
self.isTrain = False
|
|
self.device = torch.device('cpu')
|
|
self.save_dir = " "
|
|
self.loss_names = []
|
|
self.model_names = []
|
|
self.visual_names = []
|
|
self.parallel_names = []
|
|
self.optimizers = []
|
|
self.image_paths = []
|
|
self.metric = 0
|
|
|
|
@staticmethod
|
|
def dict_grad_hook_factory(add_func=lambda x: x):
|
|
saved_dict = dict()
|
|
|
|
def hook_gen(name):
|
|
def grad_hook(grad):
|
|
saved_vals = add_func(grad)
|
|
saved_dict[name] = saved_vals
|
|
return grad_hook
|
|
return hook_gen, saved_dict
|
|
|
|
@staticmethod
|
|
def modify_commandline_options(parser, is_train):
|
|
"""Add new model-specific options, and rewrite default values for existing options.
|
|
|
|
Parameters:
|
|
parser -- original option parser
|
|
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
|
|
|
|
Returns:
|
|
the modified parser.
|
|
"""
|
|
return parser
|
|
|
|
@abstractmethod
|
|
def set_input(self, input):
|
|
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
|
|
|
|
Parameters:
|
|
input (dict): includes the data itself and its metadata information.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def forward(self):
|
|
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def optimize_parameters(self):
|
|
"""Calculate losses, gradients, and update network weights; called in every training iteration"""
|
|
pass
|
|
|
|
def setup(self, opt):
|
|
"""Load and print networks; create schedulers
|
|
|
|
Parameters:
|
|
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
|
"""
|
|
if self.isTrain:
|
|
self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
|
|
|
|
if not self.isTrain or opt.continue_train:
|
|
load_suffix = opt.epoch
|
|
self.load_networks(load_suffix)
|
|
|
|
|
|
|
|
|
|
def parallelize(self, convert_sync_batchnorm=True):
|
|
if not self.opt.use_ddp:
|
|
for name in self.parallel_names:
|
|
if isinstance(name, str):
|
|
module = getattr(self, name)
|
|
setattr(self, name, module.to(self.device))
|
|
else:
|
|
for name in self.model_names:
|
|
if isinstance(name, str):
|
|
module = getattr(self, name)
|
|
if convert_sync_batchnorm:
|
|
module = torch.nn.SyncBatchNorm.convert_sync_batchnorm(module)
|
|
setattr(self, name, torch.nn.parallel.DistributedDataParallel(module.to(self.device),
|
|
device_ids=[self.device.index],
|
|
find_unused_parameters=True, broadcast_buffers=True))
|
|
|
|
|
|
for name in self.parallel_names:
|
|
if isinstance(name, str) and name not in self.model_names:
|
|
module = getattr(self, name)
|
|
setattr(self, name, module.to(self.device))
|
|
|
|
|
|
if self.opt.phase != 'test':
|
|
if self.opt.continue_train:
|
|
for optim in self.optimizers:
|
|
for state in optim.state.values():
|
|
for k, v in state.items():
|
|
if isinstance(v, torch.Tensor):
|
|
state[k] = v.to(self.device)
|
|
|
|
def data_dependent_initialize(self, data):
|
|
pass
|
|
|
|
def train(self):
|
|
"""Make models train mode"""
|
|
for name in self.model_names:
|
|
if isinstance(name, str):
|
|
net = getattr(self, name)
|
|
net.train()
|
|
|
|
def eval(self):
|
|
"""Make models eval mode"""
|
|
for name in self.model_names:
|
|
if isinstance(name, str):
|
|
net = getattr(self, name)
|
|
net.eval()
|
|
|
|
def test(self):
|
|
"""Forward function used in test time.
|
|
|
|
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
|
|
It also calls <compute_visuals> to produce additional visualization results
|
|
"""
|
|
with torch.no_grad():
|
|
self.forward()
|
|
self.compute_visuals()
|
|
|
|
def compute_visuals(self):
|
|
"""Calculate additional output images for visdom and HTML visualization"""
|
|
pass
|
|
|
|
def get_image_paths(self, name='A'):
|
|
""" Return image paths that are used to load current data"""
|
|
return self.image_paths if name =='A' else self.image_paths_B
|
|
|
|
def update_learning_rate(self):
|
|
"""Update learning rates for all the networks; called at the end of every epoch"""
|
|
for scheduler in self.schedulers:
|
|
if self.opt.lr_policy == 'plateau':
|
|
scheduler.step(self.metric)
|
|
else:
|
|
scheduler.step()
|
|
|
|
lr = self.optimizers[0].param_groups[0]['lr']
|
|
print('learning rate = %.7f' % lr)
|
|
|
|
def get_current_visuals(self):
|
|
"""Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
|
|
visual_ret = OrderedDict()
|
|
for name in self.visual_names:
|
|
if isinstance(name, str):
|
|
visual_ret[name] = getattr(self, name)[:, :3, ...]
|
|
return visual_ret
|
|
|
|
def get_current_losses(self):
|
|
"""Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
|
|
errors_ret = OrderedDict()
|
|
for name in self.loss_names:
|
|
if isinstance(name, str):
|
|
errors_ret[name] = float(getattr(self, 'loss_' + name))
|
|
return errors_ret
|
|
|
|
def save_networks(self, epoch):
|
|
"""Save all the networks to the disk.
|
|
|
|
Parameters:
|
|
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
|
|
"""
|
|
if not os.path.isdir(self.save_dir):
|
|
os.makedirs(self.save_dir)
|
|
|
|
save_filename = 'epoch_%s.pth' % (epoch)
|
|
save_path = os.path.join(self.save_dir, save_filename)
|
|
|
|
save_dict = {}
|
|
for name in self.model_names:
|
|
if isinstance(name, str):
|
|
net = getattr(self, name)
|
|
if isinstance(net, torch.nn.DataParallel) or isinstance(net,
|
|
torch.nn.parallel.DistributedDataParallel):
|
|
net = net.module
|
|
save_dict[name] = net.state_dict()
|
|
|
|
|
|
for i, optim in enumerate(self.optimizers):
|
|
save_dict['opt_%02d'%i] = optim.state_dict()
|
|
|
|
for i, sched in enumerate(self.schedulers):
|
|
save_dict['sched_%02d'%i] = sched.state_dict()
|
|
|
|
torch.save(save_dict, save_path)
|
|
|
|
def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
|
|
"""Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
|
|
key = keys[i]
|
|
if i + 1 == len(keys):
|
|
if module.__class__.__name__.startswith('InstanceNorm') and \
|
|
(key == 'running_mean' or key == 'running_var'):
|
|
if getattr(module, key) is None:
|
|
state_dict.pop('.'.join(keys))
|
|
if module.__class__.__name__.startswith('InstanceNorm') and \
|
|
(key == 'num_batches_tracked'):
|
|
state_dict.pop('.'.join(keys))
|
|
else:
|
|
self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
|
|
|
|
def load_networks(self, epoch):
|
|
"""Load all the networks from the disk.
|
|
|
|
Parameters:
|
|
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
|
|
"""
|
|
if self.opt.isTrain and self.opt.pretrained_name is not None:
|
|
load_dir = os.path.join(self.opt.checkpoints_dir, self.opt.pretrained_name)
|
|
else:
|
|
load_dir = self.save_dir
|
|
load_filename = 'epoch_%s.pth' % (epoch)
|
|
load_path = os.path.join(load_dir, load_filename)
|
|
state_dict = torch.load(load_path, map_location=self.device)
|
|
print('loading the model from %s' % load_path)
|
|
|
|
for name in self.model_names:
|
|
if isinstance(name, str):
|
|
net = getattr(self, name)
|
|
if isinstance(net, torch.nn.DataParallel):
|
|
net = net.module
|
|
net.load_state_dict(state_dict[name])
|
|
|
|
if self.opt.phase != 'test':
|
|
if self.opt.continue_train:
|
|
print('loading the optim from %s' % load_path)
|
|
for i, optim in enumerate(self.optimizers):
|
|
optim.load_state_dict(state_dict['opt_%02d'%i])
|
|
|
|
try:
|
|
print('loading the sched from %s' % load_path)
|
|
for i, sched in enumerate(self.schedulers):
|
|
sched.load_state_dict(state_dict['sched_%02d'%i])
|
|
except:
|
|
print('Failed to load schedulers, set schedulers according to epoch count manually')
|
|
for i, sched in enumerate(self.schedulers):
|
|
sched.last_epoch = self.opt.epoch_count - 1
|
|
|
|
|
|
|
|
|
|
def print_networks(self, verbose):
|
|
"""Print the total number of parameters in the network and (if verbose) network architecture
|
|
|
|
Parameters:
|
|
verbose (bool) -- if verbose: print the network architecture
|
|
"""
|
|
print('---------- Networks initialized -------------')
|
|
for name in self.model_names:
|
|
if isinstance(name, str):
|
|
net = getattr(self, name)
|
|
num_params = 0
|
|
for param in net.parameters():
|
|
num_params += param.numel()
|
|
if verbose:
|
|
print(net)
|
|
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
|
|
print('-----------------------------------------------')
|
|
|
|
def set_requires_grad(self, nets, requires_grad=False):
|
|
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
|
|
Parameters:
|
|
nets (network list) -- a list of networks
|
|
requires_grad (bool) -- whether the networks require gradients or not
|
|
"""
|
|
if not isinstance(nets, list):
|
|
nets = [nets]
|
|
for net in nets:
|
|
if net is not None:
|
|
for param in net.parameters():
|
|
param.requires_grad = requires_grad
|
|
|
|
def generate_visuals_for_evaluation(self, data, mode):
|
|
return {}
|
|
|