|
from flask import Flask, request, jsonify
|
|
import torch
|
|
import shutil
|
|
import os
|
|
import sys
|
|
from argparse import ArgumentParser
|
|
from time import strftime
|
|
from argparse import Namespace
|
|
from src.utils.preprocess import CropAndExtract
|
|
from src.test_audio2coeff import Audio2Coeff
|
|
from src.facerender.animate import AnimateFromCoeff
|
|
from src.generate_batch import get_data
|
|
from src.generate_facerender_batch import get_facerender_data
|
|
|
|
import tempfile
|
|
from openai import OpenAI
|
|
import threading
|
|
import elevenlabs
|
|
from elevenlabs import set_api_key, generate, play, clone
|
|
|
|
|
|
import uuid
|
|
import time
|
|
|
|
start_time = time.time()
|
|
|
|
class AnimationConfig:
|
|
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path):
|
|
self.driven_audio = driven_audio_path
|
|
self.source_image = source_image_path
|
|
self.ref_eyeblink = ref_pose_video_path
|
|
self.ref_pose = ref_pose_video_path
|
|
self.checkpoint_dir = './checkpoints'
|
|
self.result_dir = result_folder
|
|
self.pose_style = pose_style
|
|
self.batch_size = 2
|
|
self.expression_scale = expression_scale
|
|
self.input_yaw = None
|
|
self.input_pitch = None
|
|
self.input_roll = None
|
|
self.enhancer = enhancer
|
|
self.background_enhancer = None
|
|
self.cpu = False
|
|
self.face3dvis = False
|
|
self.still = still
|
|
self.preprocess = preprocess
|
|
self.verbose = False
|
|
self.old_version = False
|
|
self.net_recon = 'resnet50'
|
|
self.init_path = None
|
|
self.use_last_fc = False
|
|
self.bfm_folder = './checkpoints/BFM_Fitting/'
|
|
self.bfm_model = 'BFM_model_front.mat'
|
|
self.focal = 1015.
|
|
self.center = 112.
|
|
self.camera_d = 10.
|
|
self.z_near = 5.
|
|
self.z_far = 15.
|
|
self.device = 'cpu'
|
|
|
|
|
|
app = Flask(__name__)
|
|
|
|
TEMP_DIR = None
|
|
|
|
app.config['temp_response'] = None
|
|
app.config['generation_thread'] = None
|
|
app.config['text_prompt'] = None
|
|
app.config['final_video_path'] = None
|
|
|
|
|
|
|
|
def main(args):
|
|
pic_path = args.source_image
|
|
audio_path = args.driven_audio
|
|
save_dir = args.result_dir
|
|
pose_style = args.pose_style
|
|
device = args.device
|
|
batch_size = args.batch_size
|
|
input_yaw_list = args.input_yaw
|
|
input_pitch_list = args.input_pitch
|
|
input_roll_list = args.input_roll
|
|
ref_eyeblink = args.ref_eyeblink
|
|
ref_pose = args.ref_pose
|
|
preprocess = args.preprocess
|
|
|
|
dir_path = os.path.dirname(os.path.realpath(__file__))
|
|
current_root_path = dir_path
|
|
print('current_root_path ',current_root_path)
|
|
|
|
|
|
|
|
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
|
|
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
|
|
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting/BFM_Fitting')
|
|
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')
|
|
|
|
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
|
|
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
|
|
|
|
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
|
|
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
|
|
|
|
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')
|
|
|
|
if preprocess == 'full':
|
|
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar')
|
|
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
|
|
else:
|
|
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
|
|
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
|
|
|
|
|
|
|
|
print(path_of_net_recon_model)
|
|
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)
|
|
|
|
|
|
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
|
|
audio2exp_checkpoint, audio2exp_yaml_path,
|
|
wav2lip_checkpoint, device)
|
|
|
|
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
|
|
facerender_yaml_path, device)
|
|
|
|
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
|
|
os.makedirs(first_frame_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
|
|
print('first_coeff_path ',first_coeff_path)
|
|
print('crop_pic_path ',crop_pic_path)
|
|
|
|
if first_coeff_path is None:
|
|
print("Can't get the coeffs of the input")
|
|
return
|
|
|
|
if ref_eyeblink is not None:
|
|
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0]
|
|
ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname)
|
|
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
|
|
|
|
ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir)
|
|
else:
|
|
ref_eyeblink_coeff_path=None
|
|
print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path)
|
|
|
|
if ref_pose is not None:
|
|
if ref_pose == ref_eyeblink:
|
|
ref_pose_coeff_path = ref_eyeblink_coeff_path
|
|
else:
|
|
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
|
|
ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname)
|
|
os.makedirs(ref_pose_frame_dir, exist_ok=True)
|
|
|
|
ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir)
|
|
else:
|
|
ref_pose_coeff_path=None
|
|
print('ref_eyeblink_coeff_path',ref_pose_coeff_path)
|
|
|
|
batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still)
|
|
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
|
|
|
|
|
|
if args.face3dvis:
|
|
from src.face3d.visualize import gen_composed_video
|
|
gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
|
|
batch_size, input_yaw_list, input_pitch_list, input_roll_list,
|
|
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
|
|
|
|
|
|
|
|
|
|
|
|
result, base64_video,temp_file_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
|
|
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
|
|
|
|
print('The generated video is named:')
|
|
app.config['temp_response'] = base64_video
|
|
app.config['final_video_path'] = temp_file_path
|
|
return base64_video, temp_file_path
|
|
|
|
|
|
|
|
|
|
if not args.verbose:
|
|
shutil.rmtree(save_dir)
|
|
|
|
def create_temp_dir():
|
|
return tempfile.TemporaryDirectory()
|
|
|
|
def save_uploaded_file(file, filename,TEMP_DIR):
|
|
unique_filename = str(uuid.uuid4()) + "_" + filename
|
|
file_path = os.path.join(TEMP_DIR.name, unique_filename)
|
|
file.save(file_path)
|
|
return file_path
|
|
|
|
client = OpenAI(api_key="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")
|
|
|
|
def translate_text(text_prompt, target_language):
|
|
response = client.chat.completions.create(
|
|
model="gpt-4-0125-preview",
|
|
messages=[{"role": "system", "content": "You are a helpful language translator assistant."},
|
|
{"role": "user", "content": f"Translate completely without hallucination, end to end, and give the following text to {target_language} language and the text is: {text_prompt}"},
|
|
],
|
|
max_tokens = len(text_prompt) + 200
|
|
|
|
|
|
)
|
|
return response
|
|
|
|
|
|
|
|
@app.route("/run", methods=['POST'])
|
|
async def generate_video():
|
|
global TEMP_DIR
|
|
TEMP_DIR = create_temp_dir()
|
|
if request.method == 'POST':
|
|
source_image = request.files['source_image']
|
|
text_prompt = request.form['text_prompt']
|
|
print('Input text prompt: ',text_prompt)
|
|
voice_cloning = request.form.get('voice_cloning', 'no')
|
|
target_language = request.form.get('target_language', 'original_text')
|
|
print('target_language',target_language)
|
|
pose_style = int(request.form.get('pose_style', 1))
|
|
expression_scale = int(request.form.get('expression_scale', 1))
|
|
enhancer = request.form.get('enhancer', None)
|
|
voice_gender = request.form.get('voice_gender', 'male')
|
|
still_str = request.form.get('still', 'False')
|
|
still = still_str.lower() == 'true'
|
|
print('still', still)
|
|
preprocess = request.form.get('preprocess', 'crop')
|
|
print('preprocess selected: ',preprocess)
|
|
ref_pose_video = request.files.get('ref_pose', None)
|
|
|
|
if target_language != 'original_text':
|
|
response = translate_text(text_prompt, target_language)
|
|
|
|
text_prompt = response.choices[0].message.content.strip()
|
|
|
|
app.config['text_prompt'] = text_prompt
|
|
print('Final text prompt: ',text_prompt)
|
|
|
|
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
|
|
print(source_image_path)
|
|
|
|
|
|
|
|
if voice_cloning == 'no':
|
|
if voice_gender == 'male':
|
|
voice = 'onyx'
|
|
else:
|
|
voice = 'nova'
|
|
|
|
print('Entering Audio creation using whisper')
|
|
response = client.audio.speech.create(model="tts-1-hd",
|
|
voice=voice,
|
|
input = text_prompt)
|
|
|
|
print('Audio created using whisper')
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
|
driven_audio_path = temp_file.name
|
|
|
|
response.write_to_file(driven_audio_path)
|
|
print('Audio file saved')
|
|
|
|
elif voice_cloning == 'yes':
|
|
user_voice = request.files['user_voice']
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="user_voice_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
|
user_voice_path = temp_file.name
|
|
user_voice.save(user_voice_path)
|
|
print('user_voice_path',user_voice_path)
|
|
|
|
set_api_key("87792fce164425fbe1204e9fd1fe25cd")
|
|
voice = clone(name = "User Cloned Voice",
|
|
files = [user_voice_path] )
|
|
|
|
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
|
|
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
|
for chunk in audio:
|
|
temp_file.write(chunk)
|
|
driven_audio_path = temp_file.name
|
|
print('driven_audio_path',driven_audio_path)
|
|
|
|
|
|
|
|
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
|
|
result_folder = os.path.join(save_dir, "results")
|
|
os.makedirs(result_folder, exist_ok=True)
|
|
|
|
ref_pose_video_path = None
|
|
if ref_pose_video:
|
|
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
|
ref_pose_video_path = temp_file.name
|
|
ref_pose_video.save(ref_pose_video_path)
|
|
print('ref_pose_video_path',ref_pose_video_path)
|
|
|
|
|
|
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale, enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path)
|
|
|
|
if torch.cuda.is_available() and not args.cpu:
|
|
args.device = "cuda"
|
|
else:
|
|
args.device = "cpu"
|
|
|
|
generation_thread = threading.Thread(target=main, args=(args,))
|
|
app.config['generation_thread'] = generation_thread
|
|
generation_thread.start()
|
|
response_data = {"message": "Video generation started",
|
|
"process_id": generation_thread.ident}
|
|
|
|
return jsonify(response_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/status", methods=["GET"])
|
|
def check_generation_status():
|
|
global TEMP_DIR
|
|
response = {"base64_video": "","text_prompt":"", "status": ""}
|
|
process_id = request.args.get('process_id', None)
|
|
|
|
|
|
if process_id:
|
|
generation_thread = app.config.get('generation_thread')
|
|
if generation_thread and generation_thread.ident == int(process_id) and generation_thread.is_alive():
|
|
return jsonify({"status": "in_progress"}), 200
|
|
elif app.config.get('temp_response'):
|
|
|
|
final_response = app.config['temp_response']
|
|
response["base64_video"] = final_response
|
|
response["text_prompt"] = app.config.get('text_prompt')
|
|
response["status"] = "completed"
|
|
|
|
final_video_path = app.config['final_video_path']
|
|
print('final_video_path',final_video_path)
|
|
|
|
|
|
if final_video_path and os.path.exists(final_video_path):
|
|
os.remove(final_video_path)
|
|
print("Deleted video file:", final_video_path)
|
|
|
|
TEMP_DIR.cleanup()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end_time = time.time()
|
|
total_time = round(end_time - start_time, 2)
|
|
print("Total time taken for execution:", total_time, " seconds")
|
|
return jsonify(response)
|
|
return jsonify({"error":"No process id provided"})
|
|
|
|
@app.route("/health", methods=["GET"])
|
|
def health_status():
|
|
response = {"online": "true"}
|
|
return jsonify(response)
|
|
if __name__ == '__main__':
|
|
app.run(debug=True) |