Update app.py
Browse files
app.py
CHANGED
@@ -1,374 +1,375 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
-
import torch
|
3 |
-
import shutil
|
4 |
-
import os
|
5 |
-
import sys
|
6 |
-
from argparse import ArgumentParser
|
7 |
-
from time import strftime
|
8 |
-
from argparse import Namespace
|
9 |
-
from src.utils.preprocess import CropAndExtract
|
10 |
-
from src.test_audio2coeff import Audio2Coeff
|
11 |
-
from src.facerender.animate import AnimateFromCoeff
|
12 |
-
from src.generate_batch import get_data
|
13 |
-
from src.generate_facerender_batch import get_facerender_data
|
14 |
-
# from src.utils.init_path import init_path
|
15 |
-
import tempfile
|
16 |
-
from openai import OpenAI
|
17 |
-
import threading
|
18 |
-
import elevenlabs
|
19 |
-
from elevenlabs import set_api_key, generate, play, clone
|
20 |
-
|
21 |
-
# from flask_swagger_ui import get_swaggerui_blueprint
|
22 |
-
import uuid
|
23 |
-
import time
|
24 |
-
|
25 |
-
start_time = time.time()
|
26 |
-
|
27 |
-
class AnimationConfig:
|
28 |
-
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path):
|
29 |
-
self.driven_audio = driven_audio_path
|
30 |
-
self.source_image = source_image_path
|
31 |
-
self.ref_eyeblink = ref_pose_video_path
|
32 |
-
self.ref_pose = ref_pose_video_path
|
33 |
-
self.checkpoint_dir = './checkpoints'
|
34 |
-
self.result_dir = result_folder
|
35 |
-
self.pose_style = pose_style
|
36 |
-
self.batch_size = 2
|
37 |
-
self.expression_scale = expression_scale
|
38 |
-
self.input_yaw = None
|
39 |
-
self.input_pitch = None
|
40 |
-
self.input_roll = None
|
41 |
-
self.enhancer = enhancer
|
42 |
-
self.background_enhancer = None
|
43 |
-
self.cpu = False
|
44 |
-
self.face3dvis = False
|
45 |
-
self.still = still
|
46 |
-
self.preprocess = preprocess
|
47 |
-
self.verbose = False
|
48 |
-
self.old_version = False
|
49 |
-
self.net_recon = 'resnet50'
|
50 |
-
self.init_path = None
|
51 |
-
self.use_last_fc = False
|
52 |
-
self.bfm_folder = './checkpoints/BFM_Fitting/'
|
53 |
-
self.bfm_model = 'BFM_model_front.mat'
|
54 |
-
self.focal = 1015.
|
55 |
-
self.center = 112.
|
56 |
-
self.camera_d = 10.
|
57 |
-
self.z_near = 5.
|
58 |
-
self.z_far = 15.
|
59 |
-
self.device = 'cpu'
|
60 |
-
|
61 |
-
|
62 |
-
app = Flask(__name__)
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
app.config['
|
68 |
-
app.config['
|
69 |
-
app.config['
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
#
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
audio_to_coeff = Audio2Coeff(
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
animate_from_coeff = AnimateFromCoeff(
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
os.
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
print('
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
os.
|
144 |
-
|
145 |
-
ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir)
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
os.
|
157 |
-
|
158 |
-
ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir)
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
#
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
app.config['
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
#
|
217 |
-
#
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
TEMP_DIR
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
os.
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
generation_thread
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
#
|
325 |
-
|
326 |
-
|
327 |
-
#
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
response["
|
345 |
-
response["
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
#
|
358 |
-
#
|
359 |
-
#
|
360 |
-
#
|
361 |
-
#
|
362 |
-
#
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
|
|
374 |
app.run(debug=True)
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import torch
|
3 |
+
import shutil
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
from argparse import ArgumentParser
|
7 |
+
from time import strftime
|
8 |
+
from argparse import Namespace
|
9 |
+
from src.utils.preprocess import CropAndExtract
|
10 |
+
from src.test_audio2coeff import Audio2Coeff
|
11 |
+
from src.facerender.animate import AnimateFromCoeff
|
12 |
+
from src.generate_batch import get_data
|
13 |
+
from src.generate_facerender_batch import get_facerender_data
|
14 |
+
# from src.utils.init_path import init_path
|
15 |
+
import tempfile
|
16 |
+
from openai import OpenAI
|
17 |
+
import threading
|
18 |
+
import elevenlabs
|
19 |
+
from elevenlabs import set_api_key, generate, play, clone
|
20 |
+
from flask_cors import CORS, cross_origin
|
21 |
+
# from flask_swagger_ui import get_swaggerui_blueprint
|
22 |
+
import uuid
|
23 |
+
import time
|
24 |
+
|
25 |
+
start_time = time.time()
|
26 |
+
|
27 |
+
class AnimationConfig:
|
28 |
+
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path):
|
29 |
+
self.driven_audio = driven_audio_path
|
30 |
+
self.source_image = source_image_path
|
31 |
+
self.ref_eyeblink = ref_pose_video_path
|
32 |
+
self.ref_pose = ref_pose_video_path
|
33 |
+
self.checkpoint_dir = './checkpoints'
|
34 |
+
self.result_dir = result_folder
|
35 |
+
self.pose_style = pose_style
|
36 |
+
self.batch_size = 2
|
37 |
+
self.expression_scale = expression_scale
|
38 |
+
self.input_yaw = None
|
39 |
+
self.input_pitch = None
|
40 |
+
self.input_roll = None
|
41 |
+
self.enhancer = enhancer
|
42 |
+
self.background_enhancer = None
|
43 |
+
self.cpu = False
|
44 |
+
self.face3dvis = False
|
45 |
+
self.still = still
|
46 |
+
self.preprocess = preprocess
|
47 |
+
self.verbose = False
|
48 |
+
self.old_version = False
|
49 |
+
self.net_recon = 'resnet50'
|
50 |
+
self.init_path = None
|
51 |
+
self.use_last_fc = False
|
52 |
+
self.bfm_folder = './checkpoints/BFM_Fitting/'
|
53 |
+
self.bfm_model = 'BFM_model_front.mat'
|
54 |
+
self.focal = 1015.
|
55 |
+
self.center = 112.
|
56 |
+
self.camera_d = 10.
|
57 |
+
self.z_near = 5.
|
58 |
+
self.z_far = 15.
|
59 |
+
self.device = 'cpu'
|
60 |
+
|
61 |
+
|
62 |
+
app = Flask(__name__)
|
63 |
+
CORS(app)
|
64 |
+
|
65 |
+
TEMP_DIR = None
|
66 |
+
|
67 |
+
app.config['temp_response'] = None
|
68 |
+
app.config['generation_thread'] = None
|
69 |
+
app.config['text_prompt'] = None
|
70 |
+
app.config['final_video_path'] = None
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
def main(args):
|
75 |
+
pic_path = args.source_image
|
76 |
+
audio_path = args.driven_audio
|
77 |
+
save_dir = args.result_dir
|
78 |
+
pose_style = args.pose_style
|
79 |
+
device = args.device
|
80 |
+
batch_size = args.batch_size
|
81 |
+
input_yaw_list = args.input_yaw
|
82 |
+
input_pitch_list = args.input_pitch
|
83 |
+
input_roll_list = args.input_roll
|
84 |
+
ref_eyeblink = args.ref_eyeblink
|
85 |
+
ref_pose = args.ref_pose
|
86 |
+
preprocess = args.preprocess
|
87 |
+
|
88 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
89 |
+
current_root_path = dir_path
|
90 |
+
print('current_root_path ',current_root_path)
|
91 |
+
|
92 |
+
# sadtalker_paths = init_path(args.checkpoint_dir, os.path.join(current_root_path, 'src/config'), args.size, args.old_version, args.preprocess)
|
93 |
+
|
94 |
+
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
|
95 |
+
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
|
96 |
+
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting/BFM_Fitting')
|
97 |
+
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')
|
98 |
+
|
99 |
+
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
|
100 |
+
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
|
101 |
+
|
102 |
+
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
|
103 |
+
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
|
104 |
+
|
105 |
+
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')
|
106 |
+
|
107 |
+
if preprocess == 'full':
|
108 |
+
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar')
|
109 |
+
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
|
110 |
+
else:
|
111 |
+
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
|
112 |
+
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
|
113 |
+
|
114 |
+
# preprocess_model = CropAndExtract(sadtalker_paths, device)
|
115 |
+
#init model
|
116 |
+
print(path_of_net_recon_model)
|
117 |
+
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)
|
118 |
+
|
119 |
+
# audio_to_coeff = Audio2Coeff(sadtalker_paths, device)
|
120 |
+
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
|
121 |
+
audio2exp_checkpoint, audio2exp_yaml_path,
|
122 |
+
wav2lip_checkpoint, device)
|
123 |
+
# animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device)
|
124 |
+
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
|
125 |
+
facerender_yaml_path, device)
|
126 |
+
|
127 |
+
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
|
128 |
+
os.makedirs(first_frame_dir, exist_ok=True)
|
129 |
+
# first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess,\
|
130 |
+
# source_image_flag=True, pic_size=args.size)
|
131 |
+
|
132 |
+
|
133 |
+
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
|
134 |
+
print('first_coeff_path ',first_coeff_path)
|
135 |
+
print('crop_pic_path ',crop_pic_path)
|
136 |
+
|
137 |
+
if first_coeff_path is None:
|
138 |
+
print("Can't get the coeffs of the input")
|
139 |
+
return
|
140 |
+
|
141 |
+
if ref_eyeblink is not None:
|
142 |
+
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0]
|
143 |
+
ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname)
|
144 |
+
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
|
145 |
+
# ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir, args.preprocess, source_image_flag=False)
|
146 |
+
ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir)
|
147 |
+
else:
|
148 |
+
ref_eyeblink_coeff_path=None
|
149 |
+
print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path)
|
150 |
+
|
151 |
+
if ref_pose is not None:
|
152 |
+
if ref_pose == ref_eyeblink:
|
153 |
+
ref_pose_coeff_path = ref_eyeblink_coeff_path
|
154 |
+
else:
|
155 |
+
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
|
156 |
+
ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname)
|
157 |
+
os.makedirs(ref_pose_frame_dir, exist_ok=True)
|
158 |
+
# ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir, args.preprocess, source_image_flag=False)
|
159 |
+
ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir)
|
160 |
+
else:
|
161 |
+
ref_pose_coeff_path=None
|
162 |
+
print('ref_eyeblink_coeff_path',ref_pose_coeff_path)
|
163 |
+
|
164 |
+
batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still)
|
165 |
+
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
|
166 |
+
|
167 |
+
|
168 |
+
if args.face3dvis:
|
169 |
+
from src.face3d.visualize import gen_composed_video
|
170 |
+
gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
|
171 |
+
|
172 |
+
# data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
|
173 |
+
# batch_size, input_yaw_list, input_pitch_list, input_roll_list,
|
174 |
+
# expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess, size=args.size)
|
175 |
+
|
176 |
+
|
177 |
+
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
|
178 |
+
batch_size, input_yaw_list, input_pitch_list, input_roll_list,
|
179 |
+
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
|
180 |
+
|
181 |
+
# result, base64_video,temp_file_path= animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
|
182 |
+
# enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess, img_size=args.size)
|
183 |
+
|
184 |
+
|
185 |
+
result, base64_video,temp_file_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
|
186 |
+
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
|
187 |
+
|
188 |
+
print('The generated video is named:')
|
189 |
+
app.config['temp_response'] = base64_video
|
190 |
+
app.config['final_video_path'] = temp_file_path
|
191 |
+
return base64_video, temp_file_path
|
192 |
+
|
193 |
+
# shutil.move(result, save_dir+'.mp4')
|
194 |
+
|
195 |
+
|
196 |
+
if not args.verbose:
|
197 |
+
shutil.rmtree(save_dir)
|
198 |
+
|
199 |
+
def create_temp_dir():
|
200 |
+
return tempfile.TemporaryDirectory()
|
201 |
+
|
202 |
+
def save_uploaded_file(file, filename,TEMP_DIR):
|
203 |
+
unique_filename = str(uuid.uuid4()) + "_" + filename
|
204 |
+
file_path = os.path.join(TEMP_DIR.name, unique_filename)
|
205 |
+
file.save(file_path)
|
206 |
+
return file_path
|
207 |
+
|
208 |
+
client = OpenAI(api_key="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")
|
209 |
+
|
210 |
+
def translate_text(text_prompt, target_language):
|
211 |
+
response = client.chat.completions.create(
|
212 |
+
model="gpt-4-0125-preview",
|
213 |
+
messages=[{"role": "system", "content": "You are a helpful language translator assistant."},
|
214 |
+
{"role": "user", "content": f"Translate completely without hallucination, end to end, and give the following text to {target_language} language and the text is: {text_prompt}"},
|
215 |
+
],
|
216 |
+
max_tokens = len(text_prompt) + 200 # Use the length of the input text
|
217 |
+
# temperature=0.3,
|
218 |
+
# stop=["Translate:", "Text:"]
|
219 |
+
)
|
220 |
+
return response
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
@app.route("/run", methods=['POST'])
|
225 |
+
async def generate_video():
|
226 |
+
global TEMP_DIR
|
227 |
+
TEMP_DIR = create_temp_dir()
|
228 |
+
if request.method == 'POST':
|
229 |
+
source_image = request.files['source_image']
|
230 |
+
text_prompt = request.form['text_prompt']
|
231 |
+
print('Input text prompt: ',text_prompt)
|
232 |
+
voice_cloning = request.form.get('voice_cloning', 'no')
|
233 |
+
target_language = request.form.get('target_language', 'original_text')
|
234 |
+
print('target_language',target_language)
|
235 |
+
pose_style = int(request.form.get('pose_style', 1))
|
236 |
+
expression_scale = int(request.form.get('expression_scale', 1))
|
237 |
+
enhancer = request.form.get('enhancer', None)
|
238 |
+
voice_gender = request.form.get('voice_gender', 'male')
|
239 |
+
still_str = request.form.get('still', 'False')
|
240 |
+
still = still_str.lower() == 'true'
|
241 |
+
print('still', still)
|
242 |
+
preprocess = request.form.get('preprocess', 'crop')
|
243 |
+
print('preprocess selected: ',preprocess)
|
244 |
+
ref_pose_video = request.files.get('ref_pose', None)
|
245 |
+
|
246 |
+
if target_language != 'original_text':
|
247 |
+
response = translate_text(text_prompt, target_language)
|
248 |
+
# response = await translate_text_async(text_prompt, target_language)
|
249 |
+
text_prompt = response.choices[0].message.content.strip()
|
250 |
+
|
251 |
+
app.config['text_prompt'] = text_prompt
|
252 |
+
print('Final text prompt: ',text_prompt)
|
253 |
+
|
254 |
+
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
|
255 |
+
print(source_image_path)
|
256 |
+
|
257 |
+
# driven_audio_path = await voice_cloning_async(voice_cloning, voice_gender, text_prompt, user_voice)
|
258 |
+
|
259 |
+
if voice_cloning == 'no':
|
260 |
+
if voice_gender == 'male':
|
261 |
+
voice = 'onyx'
|
262 |
+
else:
|
263 |
+
voice = 'nova'
|
264 |
+
|
265 |
+
print('Entering Audio creation using whisper')
|
266 |
+
response = client.audio.speech.create(model="tts-1-hd",
|
267 |
+
voice=voice,
|
268 |
+
input = text_prompt)
|
269 |
+
|
270 |
+
print('Audio created using whisper')
|
271 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
272 |
+
driven_audio_path = temp_file.name
|
273 |
+
|
274 |
+
response.write_to_file(driven_audio_path)
|
275 |
+
print('Audio file saved')
|
276 |
+
|
277 |
+
elif voice_cloning == 'yes':
|
278 |
+
user_voice = request.files['user_voice']
|
279 |
+
|
280 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="user_voice_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
281 |
+
user_voice_path = temp_file.name
|
282 |
+
user_voice.save(user_voice_path)
|
283 |
+
print('user_voice_path',user_voice_path)
|
284 |
+
|
285 |
+
set_api_key("87792fce164425fbe1204e9fd1fe25cd")
|
286 |
+
voice = clone(name = "User Cloned Voice",
|
287 |
+
files = [user_voice_path] )
|
288 |
+
|
289 |
+
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
|
290 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
291 |
+
for chunk in audio:
|
292 |
+
temp_file.write(chunk)
|
293 |
+
driven_audio_path = temp_file.name
|
294 |
+
print('driven_audio_path',driven_audio_path)
|
295 |
+
|
296 |
+
# elevenlabs.save(audio, driven_audio_path)
|
297 |
+
|
298 |
+
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
|
299 |
+
result_folder = os.path.join(save_dir, "results")
|
300 |
+
os.makedirs(result_folder, exist_ok=True)
|
301 |
+
|
302 |
+
ref_pose_video_path = None
|
303 |
+
if ref_pose_video:
|
304 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
|
305 |
+
ref_pose_video_path = temp_file.name
|
306 |
+
ref_pose_video.save(ref_pose_video_path)
|
307 |
+
print('ref_pose_video_path',ref_pose_video_path)
|
308 |
+
|
309 |
+
# Example of using the class with some hypothetical paths
|
310 |
+
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale, enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path)
|
311 |
+
|
312 |
+
if torch.cuda.is_available() and not args.cpu:
|
313 |
+
args.device = "cuda"
|
314 |
+
else:
|
315 |
+
args.device = "cpu"
|
316 |
+
|
317 |
+
generation_thread = threading.Thread(target=main, args=(args,))
|
318 |
+
app.config['generation_thread'] = generation_thread
|
319 |
+
generation_thread.start()
|
320 |
+
response_data = {"message": "Video generation started",
|
321 |
+
"process_id": generation_thread.ident}
|
322 |
+
|
323 |
+
return jsonify(response_data)
|
324 |
+
# base64_video = main(args)
|
325 |
+
# return jsonify({"base64_video": base64_video})
|
326 |
+
|
327 |
+
#else:
|
328 |
+
# return 'Unsupported HTTP method', 405
|
329 |
+
|
330 |
+
@app.route("/status", methods=["GET"])
|
331 |
+
def check_generation_status():
|
332 |
+
global TEMP_DIR
|
333 |
+
response = {"base64_video": "","text_prompt":"", "status": ""}
|
334 |
+
process_id = request.args.get('process_id', None)
|
335 |
+
|
336 |
+
# process_id is required to check the status for that specific process
|
337 |
+
if process_id:
|
338 |
+
generation_thread = app.config.get('generation_thread')
|
339 |
+
if generation_thread and generation_thread.ident == int(process_id) and generation_thread.is_alive():
|
340 |
+
return jsonify({"status": "in_progress"}), 200
|
341 |
+
elif app.config.get('temp_response'):
|
342 |
+
# app.config['temp_response']['status'] = 'completed'
|
343 |
+
final_response = app.config['temp_response']
|
344 |
+
response["base64_video"] = final_response
|
345 |
+
response["text_prompt"] = app.config.get('text_prompt')
|
346 |
+
response["status"] = "completed"
|
347 |
+
|
348 |
+
final_video_path = app.config['final_video_path']
|
349 |
+
print('final_video_path',final_video_path)
|
350 |
+
|
351 |
+
|
352 |
+
if final_video_path and os.path.exists(final_video_path):
|
353 |
+
os.remove(final_video_path)
|
354 |
+
print("Deleted video file:", final_video_path)
|
355 |
+
|
356 |
+
TEMP_DIR.cleanup()
|
357 |
+
# print("Temporary Directory:", TEMP_DIR.name)
|
358 |
+
# if TEMP_DIR:
|
359 |
+
# print("Contents of Temporary Directory:")
|
360 |
+
# for filename in os.listdir(TEMP_DIR.name):
|
361 |
+
# print(filename)
|
362 |
+
# else:
|
363 |
+
# print("Temporary Directory is None or already cleaned up.")
|
364 |
+
end_time = time.time()
|
365 |
+
total_time = round(end_time - start_time, 2)
|
366 |
+
print("Total time taken for execution:", total_time, " seconds")
|
367 |
+
return jsonify(response)
|
368 |
+
return jsonify({"error":"No process id provided"})
|
369 |
+
|
370 |
+
@app.route("/health", methods=["GET"])
|
371 |
+
def health_status():
|
372 |
+
response = {"online": "true"}
|
373 |
+
return jsonify(response)
|
374 |
+
if __name__ == '__main__':
|
375 |
app.run(debug=True)
|