Spaces:
Paused
Paused
File size: 11,544 Bytes
42e8c1c d8431dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import numpy as np
import cv2, argparse, torch
import torchvision.transforms.functional as TF
from videoretalking.models import load_network, load_DNet
from tqdm import tqdm
from PIL import Image
from scipy.spatial import ConvexHull
from videoretalking.third_part import face_detection
from videoretalking.third_part.face3d.models import networks
import warnings
warnings.filterwarnings("ignore")
def options():
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
parser.add_argument('--DNet_path', type=str, default='checkpoints/DNet.pt')
parser.add_argument('--LNet_path', type=str, default='checkpoints/LNet.pth')
parser.add_argument('--ENet_path', type=str, default='checkpoints/ENet.pth')
parser.add_argument('--face3d_net_path', type=str, default='checkpoints/face3d_pretrain_epoch_20.pth')
parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', required=True)
parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', required=True)
parser.add_argument('--exp_img', type=str, help='Expression template. neutral, smile or image path', default='neutral')
parser.add_argument('--outfile', type=str, help='Video path to save result')
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False)
parser.add_argument('--pads', nargs='+', type=int, default=[0, 20, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least')
parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=4)
parser.add_argument('--LNet_batch_size', type=int, help='Batch size for LNet', default=16)
parser.add_argument('--img_size', type=int, default=384)
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1],
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1],
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
parser.add_argument('--nosmooth', default=False, action='store_true', help='Prevent smoothing face detections over a short temporal window')
parser.add_argument('--static', default=False, action='store_true')
parser.add_argument('--up_face', default='original')
parser.add_argument('--one_shot', action='store_true')
parser.add_argument('--without_rl1', default=False, action='store_true', help='Do not use the relative l1')
parser.add_argument('--tmp_dir', type=str, default='temp', help='Folder to save tmp results')
parser.add_argument('--re_preprocess', action='store_true')
args = parser.parse_args()
return args
exp_aus_dict = { # AU01_r, AU02_r, AU04_r, AU05_r, AU06_r, AU07_r, AU09_r, AU10_r, AU12_r, AU14_r, AU15_r, AU17_r, AU20_r, AU23_r, AU25_r, AU26_r, AU45_r.
'sad': torch.Tensor([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
'angry':torch.Tensor([[0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
'surprise': torch.Tensor([[0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
}
def mask_postprocess(mask, thres=20):
mask[:thres, :] = 0; mask[-thres:, :] = 0
mask[:, :thres] = 0; mask[:, -thres:] = 0
mask = cv2.GaussianBlur(mask, (101, 101), 11)
mask = cv2.GaussianBlur(mask, (101, 101), 11)
return mask.astype(np.float32)
def trans_image(image):
image = TF.resize(
image, size=256, interpolation=Image.BICUBIC)
image = TF.to_tensor(image)
image = TF.normalize(image, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
return image
def obtain_seq_index(index, num_frames):
seq = list(range(index-13, index+13))
seq = [ min(max(item, 0), num_frames-1) for item in seq ]
return seq
def transform_semantic(semantic, frame_index, crop_norm_ratio=None):
index = obtain_seq_index(frame_index, semantic.shape[0])
coeff_3dmm = semantic[index,...]
ex_coeff = coeff_3dmm[:,80:144] #expression # 64
angles = coeff_3dmm[:,224:227] #euler angles for pose
translation = coeff_3dmm[:,254:257] #translation
crop = coeff_3dmm[:,259:262] #crop param
if crop_norm_ratio:
crop[:, -3] = crop[:, -3] * crop_norm_ratio
coeff_3dmm = np.concatenate([ex_coeff, angles, translation, crop], 1)
return torch.Tensor(coeff_3dmm).permute(1,0)
def find_crop_norm_ratio(source_coeff, target_coeffs):
alpha = 0.3
exp_diff = np.mean(np.abs(target_coeffs[:,80:144] - source_coeff[:,80:144]), 1) # mean different exp
angle_diff = np.mean(np.abs(target_coeffs[:,224:227] - source_coeff[:,224:227]), 1) # mean different angle
index = np.argmin(alpha*exp_diff + (1-alpha)*angle_diff) # find the smallerest index
crop_norm_ratio = source_coeff[:,-3] / target_coeffs[index:index+1, -3]
return crop_norm_ratio
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images, face_det_batch_size, nosmooth, pads, jaw_correction, detector=None):
# def face_detect(images, args, jaw_correction=False, detector=None):
if detector == None:
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
batch_size = face_det_batch_size
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size),desc='FaceDet:'):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = pads if jaw_correction else (0,20,0,0)
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
torch.cuda.empty_cache()
return results
def _load(checkpoint_path, device):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def split_coeff(coeffs):
"""
Return:
coeffs_dict -- a dict of torch.tensors
Parameters:
coeffs -- torch.tensor, size (B, 256)
"""
id_coeffs = coeffs[:, :80]
exp_coeffs = coeffs[:, 80: 144]
tex_coeffs = coeffs[:, 144: 224]
angles = coeffs[:, 224: 227]
gammas = coeffs[:, 227: 254]
translations = coeffs[:, 254:]
return {
'id': id_coeffs,
'exp': exp_coeffs,
'tex': tex_coeffs,
'angle': angles,
'gamma': gammas,
'trans': translations
}
def Laplacian_Pyramid_Blending_with_mask(A, B, m, num_levels = 6):
# generate Gaussian pyramid for A,B and mask
GA = A.copy()
GB = B.copy()
GM = m.copy()
gpA = [GA]
gpB = [GB]
gpM = [GM]
for i in range(num_levels):
GA = cv2.pyrDown(GA)
GB = cv2.pyrDown(GB)
GM = cv2.pyrDown(GM)
gpA.append(np.float32(GA))
gpB.append(np.float32(GB))
gpM.append(np.float32(GM))
# generate Laplacian Pyramids for A,B and masks
lpA = [gpA[num_levels-1]] # the bottom of the Lap-pyr holds the last (smallest) Gauss level
lpB = [gpB[num_levels-1]]
gpMr = [gpM[num_levels-1]]
for i in range(num_levels-1,0,-1):
# Laplacian: subtract upscaled version of lower level from current level
# to get the high frequencies
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
lpA.append(LA)
lpB.append(LB)
gpMr.append(gpM[i-1]) # also reverse the masks
# Now blend images according to mask in each level
LS = []
for la,lb,gm in zip(lpA,lpB,gpMr):
gm = gm[:,:,np.newaxis]
ls = la * gm + lb * (1.0 - gm)
LS.append(ls)
# now reconstruct
ls_ = LS[0]
for i in range(1,num_levels):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i])
return ls_
def load_model(device,DNet_path,LNet_path,ENet_path):
D_Net = load_DNet(DNet_path).to(device)
model = load_network(LNet_path,ENet_path).to(device)
return D_Net, model
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
use_relative_movement=False, use_relative_jacobian=False):
if adapt_movement_scale:
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
else:
adapt_movement_scale = 1
kp_new = {k: v for k, v in kp_driving.items()}
if use_relative_movement:
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
kp_value_diff *= adapt_movement_scale
kp_new['value'] = kp_value_diff + kp_source['value']
if use_relative_jacobian:
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
return kp_new
def load_face3d_net(ckpt_path, device):
net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device)
checkpoint = torch.load(ckpt_path, map_location=device)
net_recon.load_state_dict(checkpoint['net_recon'])
net_recon.eval()
return net_recon |