File size: 11,544 Bytes
42e8c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8431dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import numpy as np
import cv2, argparse, torch
import torchvision.transforms.functional as TF

from videoretalking.models import load_network, load_DNet
from tqdm import tqdm
from PIL import Image
from scipy.spatial import ConvexHull
from videoretalking.third_part import face_detection
from videoretalking.third_part.face3d.models import networks

import warnings
warnings.filterwarnings("ignore")

def options():
    parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')

    parser.add_argument('--DNet_path', type=str, default='checkpoints/DNet.pt')
    parser.add_argument('--LNet_path', type=str, default='checkpoints/LNet.pth')
    parser.add_argument('--ENet_path', type=str, default='checkpoints/ENet.pth') 
    parser.add_argument('--face3d_net_path', type=str, default='checkpoints/face3d_pretrain_epoch_20.pth')                      
    parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', required=True)
    parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', required=True)
    parser.add_argument('--exp_img', type=str, help='Expression template. neutral, smile or image path', default='neutral')
    parser.add_argument('--outfile', type=str, help='Video path to save result')

    parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False)
    parser.add_argument('--pads', nargs='+', type=int, default=[0, 20, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least')
    parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=4)
    parser.add_argument('--LNet_batch_size', type=int, help='Batch size for LNet', default=16)
    parser.add_argument('--img_size', type=int, default=384)
    parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1], 
                        help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. ' 
                        'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
    parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1], 
                        help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
                        'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
    parser.add_argument('--nosmooth', default=False, action='store_true', help='Prevent smoothing face detections over a short temporal window')
    parser.add_argument('--static', default=False, action='store_true')

    
    parser.add_argument('--up_face', default='original')
    parser.add_argument('--one_shot', action='store_true')
    parser.add_argument('--without_rl1', default=False, action='store_true', help='Do not use the relative l1')
    parser.add_argument('--tmp_dir', type=str, default='temp', help='Folder to save tmp results')
    parser.add_argument('--re_preprocess', action='store_true')
    
    args = parser.parse_args()
    return args

exp_aus_dict = {        # AU01_r, AU02_r, AU04_r, AU05_r, AU06_r, AU07_r, AU09_r, AU10_r, AU12_r, AU14_r, AU15_r, AU17_r, AU20_r, AU23_r, AU25_r, AU26_r, AU45_r.
    'sad': torch.Tensor([[ 0,     0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0]]),
    'angry':torch.Tensor([[0,     0,      0.3,    0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0]]),
    'surprise': torch.Tensor([[0, 0,      0,      0.2,    0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0]])
}

def mask_postprocess(mask, thres=20):
    mask[:thres, :] = 0; mask[-thres:, :] = 0
    mask[:, :thres] = 0; mask[:, -thres:] = 0
    mask = cv2.GaussianBlur(mask, (101, 101), 11)
    mask = cv2.GaussianBlur(mask, (101, 101), 11)
    return mask.astype(np.float32)

def trans_image(image):
    image = TF.resize(
        image, size=256, interpolation=Image.BICUBIC)
    image = TF.to_tensor(image)
    image = TF.normalize(image, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
    return image

def obtain_seq_index(index, num_frames):
    seq = list(range(index-13, index+13))
    seq = [ min(max(item, 0), num_frames-1) for item in seq ]
    return seq

def transform_semantic(semantic, frame_index, crop_norm_ratio=None):
    index = obtain_seq_index(frame_index, semantic.shape[0])
    
    coeff_3dmm = semantic[index,...]
    ex_coeff = coeff_3dmm[:,80:144] #expression # 64
    angles = coeff_3dmm[:,224:227] #euler angles for pose
    translation = coeff_3dmm[:,254:257] #translation
    crop = coeff_3dmm[:,259:262] #crop param

    if crop_norm_ratio:
        crop[:, -3] = crop[:, -3] * crop_norm_ratio

    coeff_3dmm = np.concatenate([ex_coeff, angles, translation, crop], 1)
    return torch.Tensor(coeff_3dmm).permute(1,0)   

def find_crop_norm_ratio(source_coeff, target_coeffs):
    alpha = 0.3
    exp_diff = np.mean(np.abs(target_coeffs[:,80:144] - source_coeff[:,80:144]), 1) # mean different exp
    angle_diff = np.mean(np.abs(target_coeffs[:,224:227] - source_coeff[:,224:227]), 1) # mean different angle
    index = np.argmin(alpha*exp_diff + (1-alpha)*angle_diff)  # find the smallerest index
    crop_norm_ratio = source_coeff[:,-3] / target_coeffs[index:index+1, -3]
    return crop_norm_ratio

def get_smoothened_boxes(boxes, T):
    for i in range(len(boxes)):
        if i + T > len(boxes):
            window = boxes[len(boxes) - T:]
        else:
            window = boxes[i : i + T]
        boxes[i] = np.mean(window, axis=0)
    return boxes

def face_detect(images, face_det_batch_size, nosmooth, pads, jaw_correction, detector=None):
# def face_detect(images, args, jaw_correction=False, detector=None):
    if detector == None:
        device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
        detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, 
                                                flip_input=False, device=device)

    batch_size = face_det_batch_size    
    while 1:
        predictions = []
        try:
            for i in tqdm(range(0, len(images), batch_size),desc='FaceDet:'):
                predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
        except RuntimeError:
            if batch_size == 1: 
                raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
            batch_size //= 2
            print('Recovering from OOM error; New batch size: {}'.format(batch_size))
            continue
        break

    results = []
    pady1, pady2, padx1, padx2 = pads if jaw_correction else (0,20,0,0)
    for rect, image in zip(predictions, images):
        if rect is None:
            cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
            raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')

        y1 = max(0, rect[1] - pady1)
        y2 = min(image.shape[0], rect[3] + pady2)
        x1 = max(0, rect[0] - padx1)
        x2 = min(image.shape[1], rect[2] + padx2)
        results.append([x1, y1, x2, y2])

    boxes = np.array(results)
    if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
    results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]

    del detector
    torch.cuda.empty_cache()
    return results 

def _load(checkpoint_path, device):
    if device == 'cuda':
        checkpoint = torch.load(checkpoint_path)
    else:
        checkpoint = torch.load(checkpoint_path,
                                map_location=lambda storage, loc: storage)
    return checkpoint

def split_coeff(coeffs):
        """
        Return:
            coeffs_dict     -- a dict of torch.tensors

        Parameters:
            coeffs          -- torch.tensor, size (B, 256)
        """
        id_coeffs = coeffs[:, :80]
        exp_coeffs = coeffs[:, 80: 144]
        tex_coeffs = coeffs[:, 144: 224]
        angles = coeffs[:, 224: 227]
        gammas = coeffs[:, 227: 254]
        translations = coeffs[:, 254:]
        return {
            'id': id_coeffs,
            'exp': exp_coeffs,
            'tex': tex_coeffs,
            'angle': angles,
            'gamma': gammas,
            'trans': translations
        }

def Laplacian_Pyramid_Blending_with_mask(A, B, m, num_levels = 6):
    # generate Gaussian pyramid for A,B and mask
    GA = A.copy()
    GB = B.copy()
    GM = m.copy()
    gpA = [GA]
    gpB = [GB]
    gpM = [GM]
    for i in range(num_levels):
        GA = cv2.pyrDown(GA)
        GB = cv2.pyrDown(GB)
        GM = cv2.pyrDown(GM)
        gpA.append(np.float32(GA))
        gpB.append(np.float32(GB))
        gpM.append(np.float32(GM))

    # generate Laplacian Pyramids for A,B and masks
    lpA  = [gpA[num_levels-1]] # the bottom of the Lap-pyr holds the last (smallest) Gauss level
    lpB  = [gpB[num_levels-1]]
    gpMr = [gpM[num_levels-1]]
    for i in range(num_levels-1,0,-1):
        # Laplacian: subtract upscaled version of lower level from current level
        # to get the high frequencies
        LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
        LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
        lpA.append(LA)
        lpB.append(LB)
        gpMr.append(gpM[i-1]) # also reverse the masks

    # Now blend images according to mask in each level
    LS = []
    for la,lb,gm in zip(lpA,lpB,gpMr):
        gm = gm[:,:,np.newaxis]
        ls = la * gm + lb * (1.0 - gm)
        LS.append(ls)

    # now reconstruct
    ls_ = LS[0]
    for i in range(1,num_levels):
        ls_ = cv2.pyrUp(ls_)
        ls_ = cv2.add(ls_, LS[i])
    return ls_

def load_model(device,DNet_path,LNet_path,ENet_path):
    D_Net = load_DNet(DNet_path).to(device)
    model = load_network(LNet_path,ENet_path).to(device)
    return D_Net, model

def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
                 use_relative_movement=False, use_relative_jacobian=False):
    if adapt_movement_scale:
        source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
        driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
        adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
    else:
        adapt_movement_scale = 1

    kp_new = {k: v for k, v in kp_driving.items()}
    if use_relative_movement:
        kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
        kp_value_diff *= adapt_movement_scale
        kp_new['value'] = kp_value_diff + kp_source['value']

        if use_relative_jacobian:
            jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
            kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
    return kp_new

def load_face3d_net(ckpt_path, device):
    net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device)
    checkpoint = torch.load(ckpt_path, map_location=device)    
    net_recon.load_state_dict(checkpoint['net_recon'])
    net_recon.eval()
    return net_recon