Spaces:
Paused
Paused
File size: 2,445 Bytes
3ad1e43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import os
import cv2
import torch
from gfpgan import GFPGANer
from tqdm import tqdm
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
def load_video_to_cv2(input_path):
video_stream = cv2.VideoCapture(input_path)
fps = video_stream.get(cv2.CAP_PROP_FPS)
full_frames = []
while True:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
full_frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
return full_frames, fps
def save_frames_to_video(frames, output_path, fps):
if len(frames) == 0:
raise ValueError("No frames to write to video.")
height, width, _ = frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
for frame in frames:
video_writer.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
video_writer.release()
def process_video_with_gfpgan(input_video_path, output_video_path, model_path='gfpgan/weights/GFPGANv1.4.pth'):
# Load video and convert to frames
frames, fps = load_video_to_cv2(input_video_path)
realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
bg_upsampler = RealESRGANer(
scale=2,
model_path="gfpgan/weights/RealESRGAN_x2plus.pth",
model=realesrgan_model,
tile=400,
tile_pad=10,
pre_pad=0,
half=True)
# Set up GFPGAN restorer
arch = 'clean'
channel_multiplier = 2
restorer = GFPGANer(
model_path=model_path,
upscale=2,
arch=arch,
channel_multiplier=channel_multiplier,
bg_upsampler=bg_upsampler
)
# Enhance each frame
enhanced_frames = []
print("Enhancing frames...")
for frame in tqdm(frames, desc='Processing Frames'):
# Enhance face in the frame
img = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
_, _, enhanced_img = restorer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
enhanced_frames.append(cv2.cvtColor(enhanced_img, cv2.COLOR_BGR2RGB))
# Save the enhanced frames to a video
save_frames_to_video(enhanced_frames, output_video_path, fps)
print(f'Enhanced video saved at {output_video_path}') |