File size: 25,173 Bytes
f8cdf59
c4213c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa58cc
232ebf8
 
c4213c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48cc71b
c4213c1
 
 
 
 
 
 
 
 
 
 
 
 
6e03c09
c4213c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267536
 
 
 
 
 
 
 
 
 
 
 
 
c4213c1
1267536
c4213c1
1267536
 
 
 
 
 
 
 
 
 
 
c4213c1
1267536
 
 
 
 
 
 
 
c4213c1
1267536
c4213c1
 
c1bcc37
 
c4213c1
 
30ccf11
c4213c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30ccf11
c4213c1
 
 
 
 
30ccf11
c4213c1
 
 
 
 
 
c1bcc37
c4213c1
 
 
 
 
 
e0aaa75
c4213c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ccf4dd
 
 
 
 
 
 
 
 
 
 
 
 
c4213c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496fdeb
c4213c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e03c09
c4213c1
 
 
 
 
 
 
9540636
c4213c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e03c09
c4213c1
 
 
 
 
6e03c09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4213c1
6e03c09
 
c4213c1
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
from flask import Flask, request, jsonify, Response, stream_with_context
import torch
import shutil
import os
import sys
from argparse import ArgumentParser
from time import strftime
from argparse import Namespace
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
# from src.utils.init_path import init_path
import tempfile
from openai import OpenAI, AsyncOpenAI
import threading
import elevenlabs
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings
# from flask_cors import CORS, cross_origin
# from flask_swagger_ui import get_swaggerui_blueprint
import uuid
import time
from PIL import Image
import moviepy.editor as mp
import requests
import json
import pickle
from celery import Celery
# from gevent import monkey
# monkey.patch_all()
import torch.multiprocessing as t
import multiprocessing
multiprocessing.set_start_method('spawn', force=True)

class AnimationConfig:
    def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded):
        self.driven_audio = driven_audio_path
        self.source_image = source_image_path
        self.ref_eyeblink = None
        self.ref_pose = ref_pose_video_path
        self.checkpoint_dir = './checkpoints'
        self.result_dir = result_folder
        self.pose_style = pose_style
        self.batch_size = 2
        self.expression_scale = expression_scale
        self.input_yaw = None
        self.input_pitch = None
        self.input_roll = None
        self.enhancer = enhancer
        self.background_enhancer = None
        self.cpu = False
        self.face3dvis = False
        self.still = still  
        self.preprocess = preprocess
        self.verbose = False
        self.old_version = False
        self.net_recon = 'resnet50'
        self.init_path = None
        self.use_last_fc = False
        self.bfm_folder = './checkpoints/BFM_Fitting/'
        self.bfm_model = 'BFM_model_front.mat'
        self.focal = 1015.
        self.center = 112.
        self.camera_d = 10.
        self.z_near = 5.
        self.z_far = 15.
        self.device = 'cuda'
        self.image_hardcoded = image_hardcoded


app = Flask(__name__)
# CORS(app)
app.config['broker_url'] = 'redis://localhost:6379/0'
app.config['result_backend'] = 'redis://localhost:6379/0'

celery = Celery(app.name, broker=app.config['broker_url'])
celery.conf.update(app.config)

TEMP_DIR = None
start_time = None
chunk_tasks = []

app.config['temp_response'] = None
app.config['generation_thread'] = None
app.config['text_prompt'] = None
app.config['final_video_path'] = None
app.config['final_video_duration'] = None




def main(args):
    print("Entered main function")
    pic_path = args.source_image
    audio_path = args.driven_audio
    save_dir = args.result_dir
    pose_style = args.pose_style
    device = args.device
    batch_size = args.batch_size
    input_yaw_list = args.input_yaw
    input_pitch_list = args.input_pitch
    input_roll_list = args.input_roll
    ref_eyeblink = args.ref_eyeblink
    ref_pose = args.ref_pose
    preprocess = args.preprocess
    image_hardcoded = args.image_hardcoded

    dir_path = os.path.dirname(os.path.realpath(__file__))
    current_root_path = dir_path
    print('current_root_path ',current_root_path)

    # sadtalker_paths = init_path(args.checkpoint_dir, os.path.join(current_root_path, 'src/config'), args.size, args.old_version, args.preprocess)

    path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
    path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
    dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting')
    wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')

    audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
    audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
    
    audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
    audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')

    free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')

    if preprocess == 'full':
        mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar')
        facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
    else:
        mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
        facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')


    # preprocess_model = CropAndExtract(sadtalker_paths, device)
    #init model
    print(path_of_net_recon_model)
    preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)

    # audio_to_coeff = Audio2Coeff(sadtalker_paths,  device)
    audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, 
                                audio2exp_checkpoint, audio2exp_yaml_path, 
                                wav2lip_checkpoint, device)
    # animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device)
    animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, 
                                            facerender_yaml_path, device)

    first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
    os.makedirs(first_frame_dir, exist_ok=True)
    # first_coeff_path, crop_pic_path, crop_info =  preprocess_model.generate(pic_path, first_frame_dir, args.preprocess,\
                                                                            #  source_image_flag=True, pic_size=args.size)


    # fixed_temp_dir = "/tmp/preprocess_data"
    # os.makedirs(fixed_temp_dir, exist_ok=True)
    # preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl")

    # if os.path.exists(preprocessed_data_path) and image_hardcoded == "yes":
    #     print("Loading preprocessed data...")
    #     with open(preprocessed_data_path, "rb") as f:
    #         preprocessed_data = pickle.load(f)
    #     first_coeff_new_path = preprocessed_data["first_coeff_path"]
    #     crop_pic_new_path = preprocessed_data["crop_pic_path"]
    #     crop_info_path = preprocessed_data["crop_info_path"]
    #     with open(crop_info_path, "rb") as f:
    #         crop_info = pickle.load(f)
            
    #     print(f"Loaded existing preprocessed data from: {preprocessed_data_path}")
    
    # else:
    #     print("Running preprocessing...")
    #     first_coeff_path, crop_pic_path, crop_info =  preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
    #     first_coeff_new_path = os.path.join(fixed_temp_dir, os.path.basename(first_coeff_path))
    #     crop_pic_new_path = os.path.join(fixed_temp_dir, os.path.basename(crop_pic_path))
    #     crop_info_new_path = os.path.join(fixed_temp_dir, "crop_info.pkl")
    #     shutil.move(first_coeff_path, first_coeff_new_path)
    #     shutil.move(crop_pic_path, crop_pic_new_path)

    #     with open(crop_info_new_path, "wb") as f:
    #         pickle.dump(crop_info, f)
            
    #     preprocessed_data = {"first_coeff_path": first_coeff_new_path,
    #                         "crop_pic_path": crop_pic_new_path,
    #                         "crop_info_path": crop_info_new_path}


    #     with open(preprocessed_data_path, "wb") as f:
    #         pickle.dump(preprocessed_data, f)
    #     print(f"Preprocessed data saved to: {preprocessed_data_path}")

    first_coeff_path, crop_pic_path, crop_info =  preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)

    
    print('first_coeff_path ',first_coeff_path)
    print('crop_pic_path ',crop_pic_path)
    print('crop_info ',crop_info)

    if first_coeff_path is None:
        print("Can't get the coeffs of the input")
        return

    if ref_eyeblink is not None:
        ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0]
        ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname)
        os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
        # ref_eyeblink_coeff_path, _, _ =  preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir, args.preprocess, source_image_flag=False)
        ref_eyeblink_coeff_path, _, _ =  preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir)
    else:
        ref_eyeblink_coeff_path=None
        print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path)

    if ref_pose is not None:
        if ref_pose == ref_eyeblink:
            ref_pose_coeff_path = ref_eyeblink_coeff_path
        else:
            ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
            ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname)
            os.makedirs(ref_pose_frame_dir, exist_ok=True)
            # ref_pose_coeff_path, _, _ =  preprocess_model.generate(ref_pose, ref_pose_frame_dir, args.preprocess, source_image_flag=False)
            ref_pose_coeff_path, _, _ =  preprocess_model.generate(ref_pose, ref_pose_frame_dir)
    else:
        ref_pose_coeff_path=None
        print('ref_eyeblink_coeff_path',ref_pose_coeff_path)

    batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still)
    coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)


    if args.face3dvis:
        from src.face3d.visualize import gen_composed_video
        gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
  
    # data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
                                # batch_size, input_yaw_list, input_pitch_list, input_roll_list,
                                # expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess, size=args.size)


    data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, 
                                batch_size, input_yaw_list, input_pitch_list, input_roll_list,
                                expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)

    # result, base64_video,temp_file_path= animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
                                # enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess, img_size=args.size)

    multiprocessing.set_start_method('spawn', force=True)
    result, base64_video,temp_file_path,new_audio_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
                                enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)


    video_clip = mp.VideoFileClip(temp_file_path)
    duration = video_clip.duration
    
    app.config['temp_response'] = base64_video
    app.config['final_video_path'] = temp_file_path
    app.config['final_video_duration'] = duration
    
    return base64_video, temp_file_path, duration


def create_temp_dir():
    return tempfile.TemporaryDirectory()

def save_uploaded_file(file, filename,TEMP_DIR):
    print("Entered save_uploaded_file")
    unique_filename = str(uuid.uuid4()) + "_" + filename
    file_path = os.path.join(TEMP_DIR.name, unique_filename)
    file.save(file_path)
    return file_path

# client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))

# def openai_chat_avatar(text_prompt):
#     response = client.chat.completions.create(
#         model="gpt-4o-mini",
#         messages=[{"role": "system", "content": "Answer using the minimum words you can ever use."},
#             {"role": "user", "content": f"Hi! I need help with something. Can you assist me with the following: {text_prompt}"},
#         ],
#         max_tokens = len(text_prompt) + 300 # Use the length of the input text
#         # temperature=0.3,
#         # stop=["Translate:", "Text:"]
#     )
#     return response

def ryzedb_chat_avatar(question):
    url = "https://inference.dev.ryzeai.ai/chat/stream"
    question = question + ". Summarize and Answer using the minimum words you can ever use."
    payload = json.dumps({
    "input": {
    "chat_history": [],
    "app_id": os.getenv('RYZE_APP_ID'),
    "question": question
    },
    "config": {}
    })
    headers = {
        'Content-Type': 'application/json'
    }
    
    try:
        # Send the POST request
        response = requests.request("POST", url, headers=headers, data=payload)
        
        # Check for successful request
        response.raise_for_status()
        
        # Return the response JSON
        return response.text
    
    except requests.exceptions.RequestException as e:
        print(f"An error occurred: {e}")
        return None

def custom_cleanup(temp_dir, exclude_dir):
    # Iterate over the files and directories in TEMP_DIR
    for filename in os.listdir(temp_dir):
        file_path = os.path.join(temp_dir, filename)
        # Skip the directory we want to exclude
        if file_path != exclude_dir:
            try:
                if os.path.isdir(file_path):
                    shutil.rmtree(file_path)
                else:
                    os.remove(file_path)
                print(f"Deleted: {file_path}")
            except Exception as e:
                print(f"Failed to delete {file_path}. Reason: {e}")


def generate_audio(voice_cloning, voice_gender, text_prompt):
    print("generate_audio")
    if voice_cloning == 'no':
        if voice_gender == 'male':
            voice = 'echo'
            print('Entering Audio creation using elevenlabs')
            set_api_key("92e149985ea2732b4359c74346c3daee")

            audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4)
            with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
                for chunk in audio:
                    temp_file.write(chunk)
                driven_audio_path = temp_file.name
                print('driven_audio_path',driven_audio_path)
                print('Audio file saved using elevenlabs')
                    
        else:
            voice = 'nova'

            print('Entering Audio creation using whisper')
            response = client.audio.speech.create(model="tts-1-hd",
                                            voice=voice,
                                            input = text_prompt)

            print('Audio created using whisper')
            with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
                driven_audio_path = temp_file.name
            
            response.write_to_file(driven_audio_path)
            print('Audio file saved using whisper')
    
    elif voice_cloning == 'yes':
        set_api_key("92e149985ea2732b4359c74346c3daee")
        # voice = clone(name = "User Cloned Voice",
        #             files = [user_voice_path] )
        voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings(
                        stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),)

        audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
        with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
            for chunk in audio:
                temp_file.write(chunk)
            driven_audio_path = temp_file.name
            print('driven_audio_path',driven_audio_path)

    return driven_audio_path

def split_audio(audio_path, chunk_duration=5):
    audio_clip = mp.AudioFileClip(audio_path)
    total_duration = audio_clip.duration

    audio_chunks = []
    for start_time in range(0, int(total_duration), chunk_duration):
        end_time = min(start_time + chunk_duration, total_duration)
        chunk = audio_clip.subclip(start_time, end_time)
        with tempfile.NamedTemporaryFile(suffix=f"_chunk_{start_time}-{end_time}.wav", prefix="audio_chunk_", dir=TEMP_DIR.name, delete=False) as temp_file:
            chunk_path = temp_file.name
            chunk.write_audiofile(chunk_path)
            audio_chunks.append(chunk_path)
    
    return audio_chunks

@celery.task
def process_video_for_chunk(audio_chunk_path, args_dict, chunk_index):
    print("Entered process_video_for_chunk")
    args = AnimationConfig(
        driven_audio_path=args_dict['driven_audio_path'],
        source_image_path=args_dict['source_image_path'],
        result_folder=args_dict['result_folder'],
        pose_style=args_dict['pose_style'],
        expression_scale=args_dict['expression_scale'],
        enhancer=args_dict['enhancer'],
        still=args_dict['still'],
        preprocess=args_dict['preprocess'],
        ref_pose_video_path=args_dict['ref_pose_video_path'],
        image_hardcoded=args_dict['image_hardcoded']
    )
    args.driven_audio = audio_chunk_path
    chunk_save_dir = os.path.join(args.result_dir, f"chunk_{chunk_index}")
    os.makedirs(chunk_save_dir, exist_ok=True)
    print("args",args)
    try:
        base64_video, video_chunk_path, duration = main(args)
        print(f"Main function returned: {video_chunk_path}, {duration}")
        return video_chunk_path
    except Exception as e:
        print(f"Error in process_video_for_chunk: {str(e)}")
        raise
    # base64_video, video_chunk_path, duration = main(args)
    # return video_chunk_path


@app.route("/run", methods=['POST'])
def generate_video():
    global start_time
    global chunk_tasks
    start_time = time.time()
    global TEMP_DIR
    TEMP_DIR = create_temp_dir()
    print('request:',request.method)
    try:
        if request.method == 'POST':
            # source_image = request.files['source_image']
            image_path = '/home/user/app/images/out.jpg'
            source_image = Image.open(image_path)
            text_prompt = request.form['text_prompt']
            
            print('Input text prompt: ',text_prompt)
            text_prompt = text_prompt.strip()
            if not text_prompt:
                return jsonify({'error': 'Input text prompt cannot be blank'}), 400
                
            voice_cloning = request.form.get('voice_cloning', 'yes')
            image_hardcoded = request.form.get('image_hardcoded', 'yes')
            chat_model_used = request.form.get('chat_model_used', 'openai')
            target_language = request.form.get('target_language', 'original_text')
            print('target_language',target_language)
            pose_style = int(request.form.get('pose_style', 1))
            expression_scale = float(request.form.get('expression_scale', 1))
            enhancer = request.form.get('enhancer', None)
            voice_gender = request.form.get('voice_gender', 'male')
            still_str = request.form.get('still', 'False')
            still = still_str.lower() == 'false'
            print('still', still)
            preprocess = request.form.get('preprocess', 'crop')
            print('preprocess selected: ',preprocess)
            ref_pose_video = request.files.get('ref_pose', None)

            if chat_model_used == 'ryzedb':
                response = ryzedb_chat_avatar(text_prompt)
                events  = response.split('\r\n\r\n')
                content = None
                for event in events:
                # Split each event block by "\r\n" to get the lines
                    lines = event.split('\r\n')
                    if len(lines) > 1 and lines[0] == 'event: data':
                        # Extract the JSON part from the second line and parse it
                        json_data = lines[1].replace('data: ', '')
                        try:
                            data = json.loads(json_data)
                            text_prompt = data.get('content')
                            app.config['text_prompt'] = text_prompt
                            print('Final output text prompt using ryzedb: ',text_prompt)
                            break  # Exit the loop once content is found
                        except json.JSONDecodeError:
                            continue

            else:
                # response = openai_chat_avatar(text_prompt)
                # text_prompt = response.choices[0].message.content.strip()
                app.config['text_prompt'] = text_prompt
                print('Final output text prompt using openai: ',text_prompt)
    
            source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
            print(source_image_path)
    
            driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt)
            chunk_duration = 5
            print(f"Splitting the audio into {chunk_duration}-second chunks...")
            audio_chunks = split_audio(driven_audio_path, chunk_duration=chunk_duration)
            print(f"Audio has been split into {len(audio_chunks)} chunks: {audio_chunks}")
        
            save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
            result_folder = os.path.join(save_dir, "results")
            os.makedirs(result_folder, exist_ok=True)
    
            ref_pose_video_path = None
            if ref_pose_video:
                with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
                    ref_pose_video_path = temp_file.name
                    ref_pose_video.save(ref_pose_video_path)
                    print('ref_pose_video_path',ref_pose_video_path)
                    
    except Exception as e:
        app.logger.error(f"An error occurred: {e}")
        return "An error occurred", 500
    
    # args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded)
    args_dict = {
    'driven_audio_path': driven_audio_path,
    'source_image_path': source_image_path,
    'result_folder': result_folder,
    'pose_style': pose_style,
    'expression_scale': expression_scale,
    'enhancer': enhancer,
    'still': still,
    'preprocess': preprocess,
    'ref_pose_video_path': ref_pose_video_path,
    'image_hardcoded': image_hardcoded,
    'device': 'cuda' if torch.cuda.is_available() else 'cpu'}

    # if torch.cuda.is_available() and not args.cpu:
    #     args.device = "cuda"
    # else:
    #     args.device = "cpu"
        
    try:
        for index, audio_chunk in enumerate(audio_chunks):
            print(f"Submitting chunk {index} with audio_chunk: {audio_chunk}")
            task = process_video_for_chunk.apply_async(args=[audio_chunk, args_dict, index])
            print(f"Task {task.id} submitted for chunk {index}")
            chunk_tasks.append(task)
            print("chunk_tasks",chunk_tasks)
        return jsonify({'status': 'Video generation started'}), 200

        
    except Exception as e:
        return jsonify({'status': 'error', 'message': str(e)}), 500

@app.route("/stream", methods=['GET'])
def stream_video_chunks():
    global chunk_tasks
    
    @stream_with_context
    def generate_chunks():
        video_chunk_paths = []
        for index, task in enumerate(chunk_tasks):
            try:
                video_chunk_path = task.get()  # Wait for each task to complete
                video_chunk_paths.append(video_chunk_path)
                print("video_chunk_paths",video_chunk_paths)
                yield f'data: {video_chunk_path}\n\n'  # Send the chunk path to the frontend
                print(f"Chunk {index} generated and sent: {video_chunk_path}")
            except Exception as e:
                print(f"Error while fetching task result: {str(e)}")
                yield f'data: error\n\n'

        preprocess_dir = os.path.join("/tmp", "preprocess_data")
        custom_cleanup(TEMP_DIR.name, preprocess_dir)
        print("Temporary files cleaned up, but preprocess_data is retained.")

    # Return the generator that streams the data as it becomes available
    return Response(generate_chunks(), content_type='text/event-stream')

@app.route("/health", methods=["GET"])
def health_status():
    response = {"online": "true"}
    return jsonify(response)
if __name__ == '__main__':
    app.run(debug=True)