File size: 7,962 Bytes
d8431dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import PIL
import PIL.Image
import dlib
import face_alignment
import numpy as np
import scipy
import scipy.ndimage
import skimage.io as io
import torch
from PIL import Image
from scipy.ndimage import gaussian_filter1d
from tqdm import tqdm

# from configs import paths_config
def paste_image(inverse_transform, img, orig_image):
    pasted_image = orig_image.copy().convert('RGBA')
    projected = img.convert('RGBA').transform(orig_image.size, Image.PERSPECTIVE, inverse_transform, Image.BILINEAR)
    pasted_image.paste(projected, (0, 0), mask=projected)
    return pasted_image

def get_landmark(filepath, predictor, detector=None, fa=None):
    """get landmark with dlib

    :return: np.array shape=(68, 2)

    """
    if fa is not None:
        image = io.imread(filepath)
        lms, _, bboxes = fa.get_landmarks(image, return_bboxes=True)
        if len(lms) == 0:
            return None
        return lms[0]

    if detector is None:
        detector = dlib.get_frontal_face_detector()
    if isinstance(filepath, PIL.Image.Image):
        img = np.array(filepath)
    else:
        img = dlib.load_rgb_image(filepath)
    dets = detector(img)

    for k, d in enumerate(dets):
        shape = predictor(img, d)
        break
    else:
        return None
    t = list(shape.parts())
    a = []
    for tt in t:
        a.append([tt.x, tt.y])
    lm = np.array(a)
    return lm


def align_face(filepath_or_image, predictor, output_size, detector=None,

               enable_padding=False, scale=1.0):
    """

    :param filepath: str

    :return: PIL Image

    """

    c, x, y = compute_transform(filepath_or_image, predictor, detector=detector,
                                scale=scale)
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    img = crop_image(filepath_or_image, output_size, quad, enable_padding=enable_padding)

    # Return aligned image.
    return img


def crop_image(filepath, output_size, quad, enable_padding=False):
    x = (quad[3] - quad[1]) / 2
    qsize = np.hypot(*x) * 2
    # read image
    if isinstance(filepath, PIL.Image.Image):
        img = filepath
    else:
        img = PIL.Image.open(filepath)
    transform_size = output_size
    # Shrink.
    shrink = int(np.floor(qsize / output_size * 0.5))
    if shrink > 1:
        rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
        img = img.resize(rsize, PIL.Image.ANTIALIAS)
        quad /= shrink
        qsize /= shrink
    # Crop.
    border = max(int(np.rint(qsize * 0.1)), 3)
    crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
            int(np.ceil(max(quad[:, 1]))))
    crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
            min(crop[3] + border, img.size[1]))
    if (crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]):
        img = img.crop(crop)
        quad -= crop[0:2]
    # Pad.
    pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
           int(np.ceil(max(quad[:, 1]))))
    pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
           max(pad[3] - img.size[1] + border, 0))
    if enable_padding and max(pad) > border - 4:
        pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
        img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
        h, w, _ = img.shape
        y, x, _ = np.ogrid[:h, :w, :1]
        mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
                          1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
        blur = qsize * 0.02
        img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
        img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
        img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
        quad += pad[:2]
    # Transform.
    img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
    if output_size < transform_size:
        img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
    return img

def compute_transform(lm, predictor, detector=None, scale=1.0, fa=None):
    # lm = get_landmark(filepath, predictor, detector, fa)
    # if lm is None:
        # raise Exception(f'Did not detect any faces in image: {filepath}')
    lm_chin = lm[0: 17]  # left-right
    lm_eyebrow_left = lm[17: 22]  # left-right
    lm_eyebrow_right = lm[22: 27]  # left-right
    lm_nose = lm[27: 31]  # top-down
    lm_nostrils = lm[31: 36]  # top-down
    lm_eye_left = lm[36: 42]  # left-clockwise
    lm_eye_right = lm[42: 48]  # left-clockwise
    lm_mouth_outer = lm[48: 60]  # left-clockwise
    lm_mouth_inner = lm[60: 68]  # left-clockwise
    # Calculate auxiliary vectors.
    eye_left = np.mean(lm_eye_left, axis=0)
    eye_right = np.mean(lm_eye_right, axis=0)
    eye_avg = (eye_left + eye_right) * 0.5
    eye_to_eye = eye_right - eye_left
    mouth_left = lm_mouth_outer[0]
    mouth_right = lm_mouth_outer[6]
    mouth_avg = (mouth_left + mouth_right) * 0.5
    eye_to_mouth = mouth_avg - eye_avg
    # Choose oriented crop rectangle.
    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
    x /= np.hypot(*x)
    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)

    x *= scale
    y = np.flipud(x) * [-1, 1]
    c = eye_avg + eye_to_mouth * 0.1
    return c, x, y


def crop_faces(IMAGE_SIZE, files, scale, center_sigma=0.0, xy_sigma=0.0, use_fa=False, fa=None):
    if use_fa:
        if fa == None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
            fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=True, device=device)
        predictor = None
        detector = None
    else:
        fa = None
        predictor = None
        detector = None
        # predictor = dlib.shape_predictor(paths_config.shape_predictor_path)
        # detector = dlib.get_frontal_face_detector()

    cs, xs, ys = [], [], []
    for lm, pil in tqdm(files):
        c, x, y = compute_transform(lm, predictor, detector=detector,
                                    scale=scale, fa=fa)
        cs.append(c)
        xs.append(x)
        ys.append(y)

    cs = np.stack(cs)
    xs = np.stack(xs)
    ys = np.stack(ys)
    if center_sigma != 0:
        cs = gaussian_filter1d(cs, sigma=center_sigma, axis=0)

    if xy_sigma != 0:
        xs = gaussian_filter1d(xs, sigma=xy_sigma, axis=0)
        ys = gaussian_filter1d(ys, sigma=xy_sigma, axis=0)

    quads = np.stack([cs - xs - ys, cs - xs + ys, cs + xs + ys, cs + xs - ys], axis=1)
    quads = list(quads)

    crops, orig_images = crop_faces_by_quads(IMAGE_SIZE, files, quads)

    return crops, orig_images, quads


def crop_faces_by_quads(IMAGE_SIZE, files, quads):
    orig_images = []
    crops = []
    for quad, (_, path) in tqdm(zip(quads, files), total=len(quads)):
        crop = crop_image(path, IMAGE_SIZE, quad.copy())
        orig_image = path # Image.open(path)
        orig_images.append(orig_image)
        crops.append(crop)
    return crops, orig_images


def calc_alignment_coefficients(pa, pb):
    matrix = []
    for p1, p2 in zip(pa, pb):
        matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])

    a = np.matrix(matrix, dtype=float)
    b = np.array(pb).reshape(8)

    res = np.dot(np.linalg.inv(a.T * a) * a.T, b)
    return np.array(res).reshape(8)