Spaces:
Paused
Paused
File size: 7,962 Bytes
d8431dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import PIL
import PIL.Image
import dlib
import face_alignment
import numpy as np
import scipy
import scipy.ndimage
import skimage.io as io
import torch
from PIL import Image
from scipy.ndimage import gaussian_filter1d
from tqdm import tqdm
# from configs import paths_config
def paste_image(inverse_transform, img, orig_image):
pasted_image = orig_image.copy().convert('RGBA')
projected = img.convert('RGBA').transform(orig_image.size, Image.PERSPECTIVE, inverse_transform, Image.BILINEAR)
pasted_image.paste(projected, (0, 0), mask=projected)
return pasted_image
def get_landmark(filepath, predictor, detector=None, fa=None):
"""get landmark with dlib
:return: np.array shape=(68, 2)
"""
if fa is not None:
image = io.imread(filepath)
lms, _, bboxes = fa.get_landmarks(image, return_bboxes=True)
if len(lms) == 0:
return None
return lms[0]
if detector is None:
detector = dlib.get_frontal_face_detector()
if isinstance(filepath, PIL.Image.Image):
img = np.array(filepath)
else:
img = dlib.load_rgb_image(filepath)
dets = detector(img)
for k, d in enumerate(dets):
shape = predictor(img, d)
break
else:
return None
t = list(shape.parts())
a = []
for tt in t:
a.append([tt.x, tt.y])
lm = np.array(a)
return lm
def align_face(filepath_or_image, predictor, output_size, detector=None,
enable_padding=False, scale=1.0):
"""
:param filepath: str
:return: PIL Image
"""
c, x, y = compute_transform(filepath_or_image, predictor, detector=detector,
scale=scale)
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
img = crop_image(filepath_or_image, output_size, quad, enable_padding=enable_padding)
# Return aligned image.
return img
def crop_image(filepath, output_size, quad, enable_padding=False):
x = (quad[3] - quad[1]) / 2
qsize = np.hypot(*x) * 2
# read image
if isinstance(filepath, PIL.Image.Image):
img = filepath
else:
img = PIL.Image.open(filepath)
transform_size = output_size
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
min(crop[3] + border, img.size[1]))
if (crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]):
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
return img
def compute_transform(lm, predictor, detector=None, scale=1.0, fa=None):
# lm = get_landmark(filepath, predictor, detector, fa)
# if lm is None:
# raise Exception(f'Did not detect any faces in image: {filepath}')
lm_chin = lm[0: 17] # left-right
lm_eyebrow_left = lm[17: 22] # left-right
lm_eyebrow_right = lm[22: 27] # left-right
lm_nose = lm[27: 31] # top-down
lm_nostrils = lm[31: 36] # top-down
lm_eye_left = lm[36: 42] # left-clockwise
lm_eye_right = lm[42: 48] # left-clockwise
lm_mouth_outer = lm[48: 60] # left-clockwise
lm_mouth_inner = lm[60: 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
x *= scale
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
return c, x, y
def crop_faces(IMAGE_SIZE, files, scale, center_sigma=0.0, xy_sigma=0.0, use_fa=False, fa=None):
if use_fa:
if fa == None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=True, device=device)
predictor = None
detector = None
else:
fa = None
predictor = None
detector = None
# predictor = dlib.shape_predictor(paths_config.shape_predictor_path)
# detector = dlib.get_frontal_face_detector()
cs, xs, ys = [], [], []
for lm, pil in tqdm(files):
c, x, y = compute_transform(lm, predictor, detector=detector,
scale=scale, fa=fa)
cs.append(c)
xs.append(x)
ys.append(y)
cs = np.stack(cs)
xs = np.stack(xs)
ys = np.stack(ys)
if center_sigma != 0:
cs = gaussian_filter1d(cs, sigma=center_sigma, axis=0)
if xy_sigma != 0:
xs = gaussian_filter1d(xs, sigma=xy_sigma, axis=0)
ys = gaussian_filter1d(ys, sigma=xy_sigma, axis=0)
quads = np.stack([cs - xs - ys, cs - xs + ys, cs + xs + ys, cs + xs - ys], axis=1)
quads = list(quads)
crops, orig_images = crop_faces_by_quads(IMAGE_SIZE, files, quads)
return crops, orig_images, quads
def crop_faces_by_quads(IMAGE_SIZE, files, quads):
orig_images = []
crops = []
for quad, (_, path) in tqdm(zip(quads, files), total=len(quads)):
crop = crop_image(path, IMAGE_SIZE, quad.copy())
orig_image = path # Image.open(path)
orig_images.append(orig_image)
crops.append(crop)
return crops, orig_images
def calc_alignment_coefficients(pa, pb):
matrix = []
for p1, p2 in zip(pa, pb):
matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
a = np.matrix(matrix, dtype=float)
b = np.array(pb).reshape(8)
res = np.dot(np.linalg.inv(a.T * a) * a.T, b)
return np.array(res).reshape(8) |