File size: 9,847 Bytes
04c1e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01f6706
04c1e71
 
 
 
 
 
 
 
 
 
01f6706
04c1e71
 
 
 
 
 
 
 
608e510
04c1e71
110db9a
04c1e71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import cv2
import yaml
import numpy as np
import warnings
from skimage import img_as_ubyte

warnings.filterwarnings('ignore')


import imageio
import torch
import torchvision


from src.facerender.modules.keypoint_detector import HEEstimator, KPDetector
from src.facerender.modules.mapping import MappingNet
from src.facerender.modules.generator import OcclusionAwareGenerator, OcclusionAwareSPADEGenerator
from src.facerender.modules.make_animation import make_animation 

from pydub import AudioSegment 
from src.utils.face_enhancer import enhancer as face_enhancer
from src.utils.paste_pic import paste_pic
from src.utils.videoio import save_video_with_watermark


class AnimateFromCoeff():

    def __init__(self, free_view_checkpoint, mapping_checkpoint,
                   config_path, device):

        with open(config_path) as f:
            config = yaml.safe_load(f)

        generator = OcclusionAwareSPADEGenerator(**config['model_params']['generator_params'],
                                                    **config['model_params']['common_params'])
        kp_extractor = KPDetector(**config['model_params']['kp_detector_params'],
                                    **config['model_params']['common_params'])
        he_estimator = HEEstimator(**config['model_params']['he_estimator_params'],
                               **config['model_params']['common_params'])
        mapping = MappingNet(**config['model_params']['mapping_params'])


        generator.to(device)
        kp_extractor.to(device)
        he_estimator.to(device)
        mapping.to(device)
        for param in generator.parameters():
            param.requires_grad = False
        for param in kp_extractor.parameters():
            param.requires_grad = False 
        for param in he_estimator.parameters():
            param.requires_grad = False
        for param in mapping.parameters():
            param.requires_grad = False

        if free_view_checkpoint is not None:
            self.load_cpk_facevid2vid(free_view_checkpoint, kp_detector=kp_extractor, generator=generator, he_estimator=he_estimator)
        else:
            raise AttributeError("Checkpoint should be specified for video head pose estimator.")

        if  mapping_checkpoint is not None:
            self.load_cpk_mapping(mapping_checkpoint, mapping=mapping)
        else:
            raise AttributeError("Checkpoint should be specified for video head pose estimator.") 

        self.kp_extractor = kp_extractor
        self.generator = generator
        self.he_estimator = he_estimator
        self.mapping = mapping

        self.kp_extractor.eval()
        self.generator.eval()
        self.he_estimator.eval()
        self.mapping.eval()
         
        self.device = device
    
    def load_cpk_facevid2vid(self, checkpoint_path, generator=None, discriminator=None, 
                        kp_detector=None, he_estimator=None, optimizer_generator=None, 
                        optimizer_discriminator=None, optimizer_kp_detector=None, 
                        optimizer_he_estimator=None, device="cpu"):
        checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
        if generator is not None:
            generator.load_state_dict(checkpoint['generator'])
        if kp_detector is not None:
            kp_detector.load_state_dict(checkpoint['kp_detector'])
        if he_estimator is not None:
            he_estimator.load_state_dict(checkpoint['he_estimator'])
        if discriminator is not None:
            try:
               discriminator.load_state_dict(checkpoint['discriminator'])
            except:
               print ('No discriminator in the state-dict. Dicriminator will be randomly initialized')
        if optimizer_generator is not None:
            optimizer_generator.load_state_dict(checkpoint['optimizer_generator'])
        if optimizer_discriminator is not None:
            try:
                optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
            except RuntimeError as e:
                print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized')
        if optimizer_kp_detector is not None:
            optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector'])
        if optimizer_he_estimator is not None:
            optimizer_he_estimator.load_state_dict(checkpoint['optimizer_he_estimator'])

        return checkpoint['epoch']
    
    def load_cpk_mapping(self, checkpoint_path, mapping=None, discriminator=None,
                 optimizer_mapping=None, optimizer_discriminator=None, device='cpu'):
        checkpoint = torch.load(checkpoint_path,  map_location=torch.device(device))
        if mapping is not None:
            mapping.load_state_dict(checkpoint['mapping'])
        if discriminator is not None:
            discriminator.load_state_dict(checkpoint['discriminator'])
        if optimizer_mapping is not None:
            optimizer_mapping.load_state_dict(checkpoint['optimizer_mapping'])
        if optimizer_discriminator is not None:
            optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])

        return checkpoint['epoch']

    def generate(self, x, video_save_dir, pic_path, crop_info, enhancer=None, background_enhancer=None, preprocess='crop'):

        source_image=x['source_image'].type(torch.FloatTensor)
        source_semantics=x['source_semantics'].type(torch.FloatTensor)
        target_semantics=x['target_semantics_list'].type(torch.FloatTensor) 
        source_image=source_image.to(self.device)
        source_semantics=source_semantics.to(self.device)
        target_semantics=target_semantics.to(self.device)
        if 'yaw_c_seq' in x:
            yaw_c_seq = x['yaw_c_seq'].type(torch.FloatTensor)
            yaw_c_seq = x['yaw_c_seq'].to(self.device)
        else:
            yaw_c_seq = None
        if 'pitch_c_seq' in x:
            pitch_c_seq = x['pitch_c_seq'].type(torch.FloatTensor)
            pitch_c_seq = x['pitch_c_seq'].to(self.device)
        else:
            pitch_c_seq = None
        if 'roll_c_seq' in x:
            roll_c_seq = x['roll_c_seq'].type(torch.FloatTensor) 
            roll_c_seq = x['roll_c_seq'].to(self.device)
        else:
            roll_c_seq = None

        frame_num = x['frame_num']

        predictions_video = make_animation(source_image, source_semantics, target_semantics,
                                        self.generator, self.kp_extractor, self.he_estimator, self.mapping, 
                                        yaw_c_seq, pitch_c_seq, roll_c_seq, use_exp = True)

        predictions_video = predictions_video.reshape((-1,)+predictions_video.shape[2:])
        predictions_video = predictions_video[:frame_num]

        video = []
        for idx in range(predictions_video.shape[0]):
            image = predictions_video[idx]
            image = np.transpose(image.data.cpu().numpy(), [1, 2, 0]).astype(np.float32)
            video.append(image)
        result = img_as_ubyte(video)

        ### the generated video is 256x256, so we  keep the aspect ratio, 
        original_size = crop_info[0]
        if original_size:
            result = [ cv2.resize(result_i,(256, int(256.0 * original_size[1]/original_size[0]) )) for result_i in result ]
        
        video_name = x['video_name']  + '.mp4'
        path = os.path.join(video_save_dir, 'temp_'+video_name)
        
        imageio.mimsave(path, result,  fps=float(25))

        av_path = os.path.join(video_save_dir, video_name)
        return_path = av_path 
        
        audio_path =  x['audio_path'] 
        audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0]
        new_audio_path = os.path.join(video_save_dir, audio_name+'.wav')
        print('new_audio_path',new_audio_path)
        start_time = 0
        # cog will not keep the .mp3 filename
        sound = AudioSegment.from_file(audio_path)
        frames = frame_num 
        end_time = start_time + frames*1/25*1000
        word1=sound.set_frame_rate(16000)
        word = word1[start_time:end_time]
        word.export(new_audio_path, format="wav")

        base64_video,temp_file_path = save_video_with_watermark(path, new_audio_path, av_path, watermark= False)
        print(f'The generated video is named {video_name} in {video_save_dir}')

        if preprocess.lower() == 'full':
            # only add watermark to the full image.
            video_name_full = x['video_name']  + '_full.mp4'
            full_video_path = os.path.join(video_save_dir, video_name_full)
            return_path = full_video_path
            base64_video,temp_file_path = paste_pic(path, pic_path, crop_info, new_audio_path, full_video_path)
            print(f'The generated video is named {video_save_dir}/{video_name_full}') 
        else:
            full_video_path = av_path 

        #### paste back then enhancers
        if enhancer:
            video_name_enhancer = x['video_name']  + '_enhanced.mp4'
            enhanced_path = os.path.join(video_save_dir, 'temp_'+video_name_enhancer)
            av_path_enhancer = os.path.join(video_save_dir, video_name_enhancer) 
            return_path = av_path_enhancer
            enhanced_images = face_enhancer(temp_file_path, method=enhancer, bg_upsampler=background_enhancer)

            imageio.mimsave(enhanced_path, enhanced_images, fps=float(25))
            
            base64_video,temp_file_path = save_video_with_watermark(enhanced_path, new_audio_path, av_path_enhancer, watermark= False)
            print(f'The generated video is named {video_save_dir}/{video_name_enhancer}')
            os.remove(enhanced_path)

        os.remove(path)
        # os.remove(new_audio_path)

        return return_path,base64_video,temp_file_path, new_audio_path