Spaces:
Paused
Paused
# TODO | |
import functools | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from utils import flow_util | |
from models.base_blocks import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder | |
# DNet | |
class DNet(nn.Module): | |
def __init__(self): | |
super(DNet, self).__init__() | |
self.mapping_net = MappingNet() | |
self.warpping_net = WarpingNet() | |
self.editing_net = EditingNet() | |
def forward(self, input_image, driving_source, stage=None): | |
if stage == 'warp': | |
descriptor = self.mapping_net(driving_source) | |
output = self.warpping_net(input_image, descriptor) | |
else: | |
descriptor = self.mapping_net(driving_source) | |
output = self.warpping_net(input_image, descriptor) | |
output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor) | |
return output | |
class MappingNet(nn.Module): | |
def __init__(self, coeff_nc=73, descriptor_nc=256, layer=3): | |
super( MappingNet, self).__init__() | |
self.layer = layer | |
nonlinearity = nn.LeakyReLU(0.1) | |
self.first = nn.Sequential( | |
torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True)) | |
for i in range(layer): | |
net = nn.Sequential(nonlinearity, | |
torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3)) | |
setattr(self, 'encoder' + str(i), net) | |
self.pooling = nn.AdaptiveAvgPool1d(1) | |
self.output_nc = descriptor_nc | |
def forward(self, input_3dmm): | |
out = self.first(input_3dmm) | |
for i in range(self.layer): | |
model = getattr(self, 'encoder' + str(i)) | |
out = model(out) + out[:,:,3:-3] | |
out = self.pooling(out) | |
return out | |
class WarpingNet(nn.Module): | |
def __init__( | |
self, | |
image_nc=3, | |
descriptor_nc=256, | |
base_nc=32, | |
max_nc=256, | |
encoder_layer=5, | |
decoder_layer=3, | |
use_spect=False | |
): | |
super( WarpingNet, self).__init__() | |
nonlinearity = nn.LeakyReLU(0.1) | |
norm_layer = functools.partial(LayerNorm2d, affine=True) | |
kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect} | |
self.descriptor_nc = descriptor_nc | |
self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc, | |
max_nc, encoder_layer, decoder_layer, **kwargs) | |
self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc), | |
nonlinearity, | |
nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3)) | |
self.pool = nn.AdaptiveAvgPool2d(1) | |
def forward(self, input_image, descriptor): | |
final_output={} | |
output = self.hourglass(input_image, descriptor) | |
final_output['flow_field'] = self.flow_out(output) | |
deformation = flow_util.convert_flow_to_deformation(final_output['flow_field']) | |
final_output['warp_image'] = flow_util.warp_image(input_image, deformation) | |
return final_output | |
class EditingNet(nn.Module): | |
def __init__( | |
self, | |
image_nc=3, | |
descriptor_nc=256, | |
layer=3, | |
base_nc=64, | |
max_nc=256, | |
num_res_blocks=2, | |
use_spect=False): | |
super(EditingNet, self).__init__() | |
nonlinearity = nn.LeakyReLU(0.1) | |
norm_layer = functools.partial(LayerNorm2d, affine=True) | |
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect} | |
self.descriptor_nc = descriptor_nc | |
# encoder part | |
self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs) | |
self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs) | |
def forward(self, input_image, warp_image, descriptor): | |
x = torch.cat([input_image, warp_image], 1) | |
x = self.encoder(x) | |
gen_image = self.decoder(x, descriptor) | |
return gen_image | |