aiavatartest / app_parallel.py
Spanicin's picture
Update app_parallel.py
c639632 verified
raw
history blame
18.6 kB
from flask import Flask, request, jsonify, stream_with_context
import torch
import shutil
import os
import sys
from time import strftime
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
# from src.utils.init_path import init_path
import tempfile
from openai import OpenAI
import elevenlabs
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings
import uuid
import time
from PIL import Image
import moviepy.editor as mp
import requests
import json
import pickle
# from dotenv import load_dotenv
from concurrent.futures import ProcessPoolExecutor, as_completed, ThreadPoolExecutor
# Load environment variables from .env file
# load_dotenv()
# Initialize ProcessPoolExecutor for parallel processing
executor = ThreadPoolExecutor(max_workers=3)
torch.cuda.empty_cache()
class AnimationConfig:
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded):
self.driven_audio = driven_audio_path
self.source_image = source_image_path
self.ref_eyeblink = None
self.ref_pose = None
self.checkpoint_dir = './checkpoints'
self.result_dir = result_folder
self.pose_style = pose_style
self.batch_size = 2
self.expression_scale = expression_scale
self.input_yaw = None
self.input_pitch = None
self.input_roll = None
self.enhancer = enhancer
self.background_enhancer = None
self.cpu = False
self.face3dvis = False
self.still = still
self.preprocess = preprocess
self.verbose = False
self.old_version = False
self.net_recon = 'resnet50'
self.init_path = None
self.use_last_fc = False
self.bfm_folder = './checkpoints/BFM_Fitting/'
self.bfm_model = 'BFM_model_front.mat'
self.focal = 1015.
self.center = 112.
self.camera_d = 10.
self.z_near = 5.
self.z_far = 15.
self.device = 'cuda'
self.image_hardcoded = image_hardcoded
app = Flask(__name__)
# CORS(app)
TEMP_DIR = None
start_time = None
future_to_chunk = {}
app.config['temp_response'] = None
app.config['generation_thread'] = None
app.config['text_prompt'] = None
app.config['final_video_path'] = None
app.config['final_video_duration'] = None
# Global paths
dir_path = os.path.dirname(os.path.realpath(__file__))
current_root_path = dir_path
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat')
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth')
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting')
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth')
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth')
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth')
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar')
# Function for running the actual task (using preprocessed data)
def process_chunk(audio_chunk, preprocessed_data, args):
print("Entered Process Chunk Function")
global audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint
global free_view_checkpoint
if args.preprocess == 'full':
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00109-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
else:
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
first_coeff_path = preprocessed_data["first_coeff_path"]
crop_pic_path = preprocessed_data["crop_pic_path"]
crop_info_path = preprocessed_data["crop_info_path"]
with open(crop_info_path , "rb") as f:
crop_info = pickle.load(f)
print(f"Loaded existing preprocessed data")
print("first_coeff_path",first_coeff_path)
print("crop_pic_path",crop_pic_path)
print("crop_info",crop_info)
torch.cuda.empty_cache()
batch = get_data(first_coeff_path, audio_chunk, args.device, ref_eyeblink_coeff_path=None, still=args.still)
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
audio2exp_checkpoint, audio2exp_yaml_path,
wav2lip_checkpoint, args.device)
coeff_path = audio_to_coeff.generate(batch, args.result_dir, args.pose_style, ref_pose_coeff_path=None)
# Further processing with animate_from_coeff using the coeff_path
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
facerender_yaml_path, args.device)
torch.cuda.empty_cache()
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_chunk,
args.batch_size, args.input_yaw, args.input_pitch, args.input_roll,
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
torch.cuda.empty_cache()
print("Will Enter Animation")
result, base64_video, temp_file_path, _ = animate_from_coeff.generate(data, args.result_dir, args.source_image, crop_info,
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
# video_clip = mp.VideoFileClip(temp_file_path)
# duration = video_clip.duration
app.config['temp_response'] = base64_video
app.config['final_video_path'] = temp_file_path
# app.config['final_video_duration'] = duration
torch.cuda.empty_cache()
return base64_video, temp_file_path
def create_temp_dir():
return tempfile.TemporaryDirectory()
def save_uploaded_file(file, filename,TEMP_DIR):
print("Entered save_uploaded_file")
unique_filename = str(uuid.uuid4()) + "_" + filename
file_path = os.path.join(TEMP_DIR.name, unique_filename)
file.save(file_path)
return file_path
def custom_cleanup(temp_dir):
# Iterate over the files and directories in TEMP_DIR
for filename in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, filename)
if os.path.isdir(file_path):
shutil.rmtree(file_path)
else:
os.remove(file_path)
print(f"Deleted: {file_path}")
torch.cuda.empty_cache()
import gc
gc.collect()
def generate_audio(voice_cloning, voice_gender, text_prompt):
print("generate_audio")
if voice_cloning == 'no':
if voice_gender == 'male':
voice = 'echo'
print('Entering Audio creation using elevenlabs')
set_api_key('92e149985ea2732b4359c74346c3daee')
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
print('Audio file saved using elevenlabs')
else:
voice = 'nova'
print('Entering Audio creation using whisper')
response = client.audio.speech.create(model="tts-1-hd",
voice=voice,
input = text_prompt)
print('Audio created using whisper')
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
driven_audio_path = temp_file.name
response.write_to_file(driven_audio_path)
print('Audio file saved using whisper')
elif voice_cloning == 'yes':
set_api_key('92e149985ea2732b4359c74346c3daee')
# voice = clone(name = "User Cloned Voice",
# files = [user_voice_path] )
voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings(
stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),)
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
return driven_audio_path
def run_preprocessing(args):
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir')
os.makedirs(first_frame_dir, exist_ok=True)
fixed_temp_dir = "/tmp/preprocess_data"
os.makedirs(fixed_temp_dir, exist_ok=True)
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl")
if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes":
print("Loading preprocessed data...")
with open(preprocessed_data_path, "rb") as f:
preprocessed_data = pickle.load(f)
print("Loaded existing preprocessed data from:", preprocessed_data_path)
else:
print("Running preprocessing...")
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, args.device)
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(args.source_image, first_frame_dir, args.preprocess, source_image_flag=True)
first_coeff_new_path = os.path.join(fixed_temp_dir, os.path.basename(first_coeff_path))
crop_pic_new_path = os.path.join(fixed_temp_dir, os.path.basename(crop_pic_path))
crop_info_new_path = os.path.join(fixed_temp_dir, "crop_info.pkl")
shutil.move(first_coeff_path, first_coeff_new_path)
shutil.move(crop_pic_path, crop_pic_new_path)
with open(crop_info_new_path, "wb") as f:
pickle.dump(crop_info, f)
preprocessed_data = {"first_coeff_path": first_coeff_new_path,
"crop_pic_path": crop_pic_new_path,
"crop_info_path": crop_info_new_path}
with open(preprocessed_data_path, "wb") as f:
pickle.dump(preprocessed_data, f)
print(f"Preprocessed data saved to: {preprocessed_data_path}")
return preprocessed_data
client = OpenAI(api_key="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")
def openai_chat_avatar(text_prompt):
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "system", "content": "Ensure answers are concise, human-like, and clear while maintaining quality. Use the fewest possible words, avoiding unnecessary articles, prepositions, and adjectives. Responses should be short but still address the question thoroughly without being verbose.Keep them to one sentence only"},
{"role": "user", "content": f"Hi! I need help with something. {text_prompt}"},
],
max_tokens = len(text_prompt) + 300 # Use the length of the input text
# temperature=0.3,
# stop=["Translate:", "Text:"]
)
return response
def split_audio(audio_path, chunk_duration):
audio_clip = mp.AudioFileClip(audio_path)
total_duration = audio_clip.duration
audio_chunks = []
for start_time in range(0, int(total_duration), chunk_duration):
end_time = min(start_time + chunk_duration, total_duration)
chunk = audio_clip.subclip(start_time, end_time)
with tempfile.NamedTemporaryFile(suffix=f"_chunk_{start_time}-{end_time}.wav", prefix="audio_chunk_", dir=TEMP_DIR.name, delete=False) as temp_file:
chunk_path = temp_file.name
chunk.write_audiofile(chunk_path)
audio_chunks.append((start_time, chunk_path))
return audio_chunks
# Generator function to yield chunk results as they are processed
def generate_chunks(audio_chunks, preprocessed_data, args):
global TEMP_DIR
future_to_chunk = {executor.submit(process_chunk, chunk[1], preprocessed_data, args): chunk[0] for chunk in audio_chunks}
try:
for future in as_completed(future_to_chunk):
idx = future_to_chunk[future] # Get the original chunk that was processed
try:
base64_video, temp_file_path = future.result() # Get the result of the completed task
yield json.dumps({'start_time': idx, 'base64_video': base64_video}).encode('utf-8')
except Exception as e:
yield f"Task for chunk {idx} failed: {e}\n"
finally:
if TEMP_DIR:
custom_cleanup(TEMP_DIR.name)
@app.route("/run", methods=['POST'])
def parallel_processing():
global start_time, future_to_chunk
start_time = time.time()
global TEMP_DIR
global audio_chunks
TEMP_DIR = create_temp_dir()
print('request:',request.method)
try:
if request.method == 'POST':
# source_image = request.files['source_image']
image_path = '/home/user/app/images/out.jpg'
source_image = Image.open(image_path)
text_prompt = request.form['text_prompt']
print('Input text prompt: ',text_prompt)
text_prompt = text_prompt.strip()
if not text_prompt:
return jsonify({'error': 'Input text prompt cannot be blank'}), 400
voice_cloning = request.form.get('voice_cloning', 'yes')
image_hardcoded = request.form.get('image_hardcoded', 'no')
chat_model_used = request.form.get('chat_model_used', 'openai')
target_language = request.form.get('target_language', 'original_text')
print('target_language',target_language)
pose_style = int(request.form.get('pose_style', 1))
expression_scale = float(request.form.get('expression_scale', 1))
enhancer = request.form.get('enhancer', None)
voice_gender = request.form.get('voice_gender', 'male')
still_str = request.form.get('still', 'False')
still = still_str.lower() == 'false'
print('still', still)
preprocess = request.form.get('preprocess', 'crop')
print('preprocess selected: ',preprocess)
# ref_pose_video = request.files.get('ref_pose', None)
# response = openai_chat_avatar(text_prompt)
# text_prompt = response.choices[0].message.content.strip()
app.config['text_prompt'] = text_prompt
print('Final output text prompt using openai: ',text_prompt)
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
print(source_image_path)
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt)
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
result_folder = os.path.join(save_dir, "results")
os.makedirs(result_folder, exist_ok=True)
ref_pose_video_path = None
# if ref_pose_video:
# with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
# ref_pose_video_path = temp_file.name
# ref_pose_video.save(ref_pose_video_path)
# print('ref_pose_video_path',ref_pose_video_path)
except Exception as e:
app.logger.error(f"An error occurred: {e}")
return jsonify({'status': 'error', 'message': str(e)}), 500
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded)
preprocessed_data = run_preprocessing(args)
chunk_duration = 3
print(f"Splitting the audio into {chunk_duration}-second chunks...")
audio_chunks = split_audio(driven_audio_path, chunk_duration=chunk_duration)
print(f"Audio has been split into {len(audio_chunks)} chunks: {audio_chunks}")
# future_to_chunk = {executor.submit(process_chunk, chunk[1], preprocessed_data, args): chunk[0] for chunk in audio_chunks}
# return jsonify({"status": "processing started"}), 200
try:
return stream_with_context(generate_chunks(audio_chunks, preprocessed_data, args))
# base64_video, temp_file_path, duration = process_chunk(driven_audio_path, preprocessed_data, args)
except Exception as e:
return jsonify({'status': 'error', 'message': str(e)}), 500
# @app.route("/stream", methods=["GET"])
# def stream_results():
# global future_to_chunk
# def generate():
# for future in as_completed(future_to_chunk):
# idx = future_to_chunk[future]
# try:
# base64_video, temp_file_path = future.result()
# yield json.dumps({'start_time': idx, 'path': temp_file_path}).encode('utf-8')
# except Exception as e:
# yield json.dumps({'start_time': idx, 'error': str(e)}).encode('utf-8')
# return stream_with_context(generate())
@app.route("/health", methods=["GET"])
def health_status():
response = {"online": "true"}
return jsonify(response)
if __name__ == '__main__':
app.run(debug=True)