aiavatartest / app.py
Spanicin's picture
Update app.py
b0a721c verified
raw
history blame
27.3 kB
from flask import Flask, request, jsonify
import torch
import shutil
import os
import sys
from argparse import ArgumentParser
from time import strftime
from argparse import Namespace
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
# from src.utils.init_path import init_path
import tempfile
from openai import OpenAI
import threading
import elevenlabs
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings
from flask_cors import CORS, cross_origin
# from flask_swagger_ui import get_swaggerui_blueprint
import uuid
import time
from PIL import Image
import moviepy.editor as mp
import requests
import json
import pickle
# from videoretalking import inference_function
# import base64
# import gfpgan_enhancer
class AnimationConfig:
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded):
self.driven_audio = driven_audio_path
self.source_image = source_image_path
self.ref_eyeblink = None
self.ref_pose = ref_pose_video_path
self.checkpoint_dir = './checkpoints'
self.result_dir = result_folder
self.pose_style = pose_style
self.batch_size = 2
self.expression_scale = expression_scale
self.input_yaw = None
self.input_pitch = None
self.input_roll = None
self.enhancer = enhancer
self.background_enhancer = None
self.cpu = False
self.face3dvis = False
self.still = still
self.preprocess = preprocess
self.verbose = False
self.old_version = False
self.net_recon = 'resnet50'
self.init_path = None
self.use_last_fc = False
self.bfm_folder = './checkpoints/BFM_Fitting/'
self.bfm_model = 'BFM_model_front.mat'
self.focal = 1015.
self.center = 112.
self.camera_d = 10.
self.z_near = 5.
self.z_far = 15.
self.device = 'cuda'
self.image_hardcoded = image_hardcoded
app = Flask(__name__)
CORS(app)
TEMP_DIR = None
start_time = None
app.config['temp_response'] = None
app.config['generation_thread'] = None
app.config['text_prompt'] = None
app.config['final_video_path'] = None
app.config['final_video_duration'] = None
def main(args):
pic_path = args.source_image
audio_path = args.driven_audio
save_dir = args.result_dir
pose_style = args.pose_style
device = args.device
batch_size = args.batch_size
input_yaw_list = args.input_yaw
input_pitch_list = args.input_pitch
input_roll_list = args.input_roll
ref_eyeblink = args.ref_eyeblink
ref_pose = args.ref_pose
preprocess = args.preprocess
image_hardcoded = args.image_hardcoded
dir_path = os.path.dirname(os.path.realpath(__file__))
current_root_path = dir_path
print('current_root_path ',current_root_path)
# sadtalker_paths = init_path(args.checkpoint_dir, os.path.join(current_root_path, 'src/config'), args.size, args.old_version, args.preprocess)
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting')
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')
if preprocess == 'full':
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
else:
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
# preprocess_model = CropAndExtract(sadtalker_paths, device)
#init model
print(path_of_net_recon_model)
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)
# audio_to_coeff = Audio2Coeff(sadtalker_paths, device)
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
audio2exp_checkpoint, audio2exp_yaml_path,
wav2lip_checkpoint, device)
# animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device)
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
facerender_yaml_path, device)
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
os.makedirs(first_frame_dir, exist_ok=True)
# first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess,\
# source_image_flag=True, pic_size=args.size)
fixed_temp_dir = "/tmp/preprocess_data"
os.makedirs(fixed_temp_dir, exist_ok=True)
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl")
if os.path.exists(preprocessed_data_path) and image_hardcoded == "yes":
print("Loading preprocessed data...")
with open(preprocessed_data_path, "rb") as f:
preprocessed_data = pickle.load(f)
first_coeff_new_path = preprocessed_data["first_coeff_path"]
crop_pic_new_path = preprocessed_data["crop_pic_path"]
crop_info_path = preprocessed_data["crop_info_path"]
with open(crop_info_path, "rb") as f:
crop_info = pickle.load(f)
print(f"Loaded existing preprocessed data from: {preprocessed_data_path}")
else:
print("Running preprocessing...")
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
first_coeff_new_path = os.path.join(fixed_temp_dir, os.path.basename(first_coeff_path))
crop_pic_new_path = os.path.join(fixed_temp_dir, os.path.basename(crop_pic_path))
crop_info_new_path = os.path.join(fixed_temp_dir, "crop_info.pkl")
shutil.move(first_coeff_path, first_coeff_new_path)
shutil.move(crop_pic_path, crop_pic_new_path)
with open(crop_info_new_path, "wb") as f:
pickle.dump(crop_info, f)
preprocessed_data = {"first_coeff_path": first_coeff_new_path,
"crop_pic_path": crop_pic_new_path,
"crop_info_path": crop_info_new_path}
with open(preprocessed_data_path, "wb") as f:
pickle.dump(preprocessed_data, f)
print(f"Preprocessed data saved to: {preprocessed_data_path}")
print('first_coeff_path ',first_coeff_new_path)
print('crop_pic_path ',crop_pic_new_path)
print('crop_info ',crop_info)
if first_coeff_new_path is None:
print("Can't get the coeffs of the input")
return
if ref_eyeblink is not None:
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0]
ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname)
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
# ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir, args.preprocess, source_image_flag=False)
ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir)
else:
ref_eyeblink_coeff_path=None
print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path)
if ref_pose is not None:
if ref_pose == ref_eyeblink:
ref_pose_coeff_path = ref_eyeblink_coeff_path
else:
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname)
os.makedirs(ref_pose_frame_dir, exist_ok=True)
# ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir, args.preprocess, source_image_flag=False)
ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir)
else:
ref_pose_coeff_path=None
print('ref_eyeblink_coeff_path',ref_pose_coeff_path)
batch = get_data(first_coeff_new_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still)
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
if args.face3dvis:
from src.face3d.visualize import gen_composed_video
gen_composed_video(args, device, first_coeff_new_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
# data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
# batch_size, input_yaw_list, input_pitch_list, input_roll_list,
# expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess, size=args.size)
data = get_facerender_data(coeff_path, crop_pic_new_path, first_coeff_new_path, audio_path,
batch_size, input_yaw_list, input_pitch_list, input_roll_list,
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
# result, base64_video,temp_file_path= animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
# enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess, img_size=args.size)
result, base64_video,temp_file_path,new_audio_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
# face_path = temp_file_path
# audio_path = new_audio_path
# temp_file = tempfile.NamedTemporaryFile(delete=False, dir=TEMP_DIR.name, suffix='.mp4')
# video_lipsync_file_path = temp_file.name
# output_path = video_lipsync_file_path
# # Call the function
# inference_function.video_lipsync_correctness(
# face=face_path,
# audio_path=audio_path,
# face3d_net_path = path_of_net_recon_model,
# outfile=output_path,
# tmp_dir="temp",
# crop=[0, -1, 0, -1],
# re_preprocess=True, # Set to True if you want to reprocess; False otherwise
# exp_img="neutral", # Can be 'smile', 'neutral', or path to an expression image
# one_shot=False,
# up_face="original", # Options: 'original', 'sad', 'angry', 'surprise'
# LNet_batch_size=16,
# without_rl1=False
# )
# print('The video with lip sync is generated')
# print("GFPGAN Activated")
# gfpgan_enhancer.process_video_with_gfpgan(output_path, output_path)
# audio_clip = mp.AudioFileClip(new_audio_path)
# video_clip = mp.VideoFileClip(output_path)
# # Combine audio and video
# final_clip = video_clip.set_audio(audio_clip)
# temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', dir=TEMP_DIR.name, delete=False)
# temp_file.close()
# final_video_path = temp_file.name
# final_clip.write_videofile(final_video_path)
# with open(final_video_path, 'rb') as f:
# video_content = f.read()
# base64_lipsync_video = base64.b64encode(video_content).decode('utf-8')
video_clip = mp.VideoFileClip(temp_file_path)
duration = video_clip.duration
app.config['temp_response'] = base64_video
app.config['final_video_path'] = temp_file_path
app.config['final_video_duration'] = duration
return base64_video, temp_file_path, duration
# shutil.move(result, save_dir+'.mp4')
if not args.verbose:
shutil.rmtree(save_dir)
def create_temp_dir():
return tempfile.TemporaryDirectory()
def save_uploaded_file(file, filename,TEMP_DIR):
unique_filename = str(uuid.uuid4()) + "_" + filename
file_path = os.path.join(TEMP_DIR.name, unique_filename)
file.save(file_path)
return file_path
client = OpenAI(api_key="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")
def translate_text(text_prompt, target_language):
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "system", "content": "You are a helpful language translator assistant."},
{"role": "user", "content": f"Translate completely without hallucination, end to end and the ouput should just be the translation of the text prompt and nothing else, and give the following text to {target_language} language and the text is: {text_prompt}"},
],
max_tokens = len(text_prompt) + 200 # Use the length of the input text
# temperature=0.3,
# stop=["Translate:", "Text:"]
)
return response
def openai_chat_avatar(text_prompt):
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "system", "content": "Answer in English language always using the minimum words you can ever use."},
{"role": "user", "content": f"Hi! I need help with something. Can you assist me with the following: {text_prompt}"},
],
max_tokens = len(text_prompt) + 300 # Use the length of the input text
# temperature=0.3,
# stop=["Translate:", "Text:"]
)
return response
def ryzedb_chat_avatar(question):
url = "https://inference.dev.ryzeai.ai/chat/stream"
question = question + ". Summarize and Answer using the minimum words you can ever use."
payload = json.dumps({
"input": {
"chat_history": [],
"app_id": "af6b2bc719a14478adcff1d71c19dc00",
"question": question
},
"config": {}
})
headers = {
'Content-Type': 'application/json'
}
try:
# Send the POST request
response = requests.request("POST", url, headers=headers, data=payload)
# Check for successful request
response.raise_for_status()
# Return the response JSON
return response.text
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return None
def custom_cleanup(temp_dir, exclude_dir):
# Iterate over the files and directories in TEMP_DIR
for filename in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, filename)
# Skip the directory we want to exclude
if file_path != exclude_dir:
try:
if os.path.isdir(file_path):
shutil.rmtree(file_path)
else:
os.remove(file_path)
print(f"Deleted: {file_path}")
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
@app.route("/run", methods=['POST'])
def generate_video():
global start_time
start_time = time.time()
global TEMP_DIR
TEMP_DIR = create_temp_dir()
print('request:',request.method)
try:
if request.method == 'POST':
# source_image = request.files['source_image']
image_path = '/home/user/app/images/marc_smile_enhanced.jpg'
source_image = Image.open(image_path)
text_prompt = request.form['text_prompt']
print('Input text prompt: ',text_prompt)
text_prompt = text_prompt.strip()
if not text_prompt:
return jsonify({'error': 'Input text prompt cannot be blank'}), 400
voice_cloning = request.form.get('voice_cloning', 'no')
image_hardcoded = request.form.get('image_hardcoded', 'yes')
chat_model_used = request.form.get('chat_model_used', 'openai')
target_language = request.form.get('target_language', 'original_text')
print('target_language',target_language)
pose_style = int(request.form.get('pose_style', 1))
expression_scale = float(request.form.get('expression_scale', 1))
enhancer = request.form.get('enhancer', None)
voice_gender = request.form.get('voice_gender', 'male')
still_str = request.form.get('still', 'False')
still = still_str.lower() == 'false'
print('still', still)
preprocess = request.form.get('preprocess', 'crop')
print('preprocess selected: ',preprocess)
ref_pose_video = request.files.get('ref_pose', None)
# if target_language != 'original_text':
# response = translate_text(text_prompt, target_language)
# # response = await translate_text_async(text_prompt, target_language)
# text_prompt = response.choices[0].message.content.strip()
if chat_model_used == 'ryzedb':
response = ryzedb_chat_avatar(text_prompt)
events = response.split('\r\n\r\n')
content = None
for event in events:
# Split each event block by "\r\n" to get the lines
lines = event.split('\r\n')
if len(lines) > 1 and lines[0] == 'event: data':
# Extract the JSON part from the second line and parse it
json_data = lines[1].replace('data: ', '')
try:
data = json.loads(json_data)
text_prompt = data.get('content')
app.config['text_prompt'] = text_prompt
print('Final output text prompt using ryzedb: ',text_prompt)
break # Exit the loop once content is found
except json.JSONDecodeError:
continue
else:
# response = openai_chat_avatar(text_prompt)
# text_prompt = response.choices[0].message.content.strip()
app.config['text_prompt'] = text_prompt
print('Final output text prompt using openai: ',text_prompt)
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
print(source_image_path)
# driven_audio_path = await voice_cloning_async(voice_cloning, voice_gender, text_prompt, user_voice)
if voice_cloning == 'no':
if voice_gender == 'male':
voice = 'echo'
print('Entering Audio creation using elevenlabs')
set_api_key("92e149985ea2732b4359c74346c3daee")
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
print('Audio file saved using elevenlabs')
else:
voice = 'nova'
print('Entering Audio creation using whisper')
response = client.audio.speech.create(model="tts-1-hd",
voice=voice,
input = text_prompt)
print('Audio created using whisper')
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
driven_audio_path = temp_file.name
response.write_to_file(driven_audio_path)
print('Audio file saved using whisper')
elif voice_cloning == 'yes':
# user_voice = request.files['user_voice']
# user_voice = '/home/user/app/images/marc_voice.mp3'
# with tempfile.NamedTemporaryFile(suffix=".wav", prefix="user_voice_",dir=TEMP_DIR.name, delete=False) as temp_file:
# with open(user_voice, 'rb') as source_file:
# file_contents = source_file.read()
# temp_file.write(file_contents)
# temp_file.flush()
# user_voice_path = temp_file.name
# user_voice.save(user_voice_path)
# print('user_voice_path',user_voice_path)
set_api_key("92e149985ea2732b4359c74346c3daee")
# voice = clone(name = "User Cloned Voice",
# files = [user_voice_path] )
voice = Voice(voice_id="DeZH4ash9IU9gUcNjVXh",name="Marc",settings=VoiceSettings(
stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),)
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
# elevenlabs.save(audio, driven_audio_path)
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
result_folder = os.path.join(save_dir, "results")
os.makedirs(result_folder, exist_ok=True)
ref_pose_video_path = None
if ref_pose_video:
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
ref_pose_video_path = temp_file.name
ref_pose_video.save(ref_pose_video_path)
print('ref_pose_video_path',ref_pose_video_path)
except Exception as e:
app.logger.error(f"An error occurred: {e}")
return "An error occurred", 500
# Example of using the class with some hypothetical paths
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded)
if torch.cuda.is_available() and not args.cpu:
args.device = "cuda"
else:
args.device = "cpu"
# generation_thread = threading.Thread(target=main, args=(args,))
# app.config['generation_thread'] = generation_thread
# generation_thread.start()
# response_data = {"message": "Video generation started",
# "process_id": generation_thread.ident}
try:
base64_video, temp_file_path, duration = main(args)
final_video_path = app.config['final_video_path']
print('final_video_path',final_video_path)
if final_video_path and os.path.exists(final_video_path):
os.remove(final_video_path)
print("Deleted video file:", final_video_path)
preprocess_dir = os.path.join("/tmp", "preprocess_data")
custom_cleanup(TEMP_DIR.name, preprocess_dir)
print("Temporary files cleaned up, but preprocess_data is retained.")
end_time = time.time()
time_taken = end_time - start_time
print(f"Time taken for endpoint: {time_taken:.2f} seconds")
return jsonify({
'base64_video': base64_video,
'text_prompt': text_prompt,
'duration': duration,
'time_taken':time_taken,
'status': 'completed'
})
except Exception as e:
return jsonify({'status': 'error', 'message': str(e)}), 500
# return jsonify(response_data)
# @app.route("/status", methods=["GET"])
# def check_generation_status():
# global TEMP_DIR
# global start_time
# response = {"base64_video": "","text_prompt":"", "status": ""}
# process_id = request.args.get('process_id', None)
# # process_id is required to check the status for that specific process
# if process_id:
# generation_thread = app.config.get('generation_thread')
# if generation_thread and generation_thread.ident == int(process_id) and generation_thread.is_alive():
# return jsonify({"status": "in_progress"}), 200
# elif app.config.get('temp_response'):
# # app.config['temp_response']['status'] = 'completed'
# final_response = app.config['temp_response']
# response["base64_video"] = final_response
# response["text_prompt"] = app.config.get('text_prompt')
# response["duration"] = app.config.get('final_video_duration')
# response["status"] = "completed"
# final_video_path = app.config['final_video_path']
# print('final_video_path',final_video_path)
# if final_video_path and os.path.exists(final_video_path):
# os.remove(final_video_path)
# print("Deleted video file:", final_video_path)
# # TEMP_DIR.cleanup()
# preprocess_dir = os.path.join("/tmp", "preprocess_data")
# custom_cleanup(TEMP_DIR.name, preprocess_dir)
# print("Temporary files cleaned up, but preprocess_data is retained.")
# end_time = time.time()
# total_time = round(end_time - start_time, 2)
# print("Total time taken for execution:", total_time, " seconds")
# response["time_taken"] = total_time
# return jsonify(response)
# return jsonify({"error":"No process id provided"})
@app.route("/health", methods=["GET"])
def health_status():
response = {"online": "true"}
return jsonify(response)
if __name__ == '__main__':
app.run(debug=True)