Spaces:
Paused
Paused
from flask import Flask, request, jsonify, stream_with_context | |
import torch | |
import shutil | |
import os | |
import sys | |
from time import strftime | |
from src.utils.preprocess import CropAndExtract | |
from src.test_audio2coeff import Audio2Coeff | |
from src.facerender.animate import AnimateFromCoeff | |
from src.generate_batch import get_data | |
from src.generate_facerender_batch import get_facerender_data | |
# from src.utils.init_path import init_path | |
import tempfile | |
from openai import OpenAI | |
import elevenlabs | |
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings | |
import uuid | |
import time | |
from PIL import Image | |
import moviepy.editor as mp | |
import requests | |
import json | |
import pickle | |
# from dotenv import load_dotenv | |
from concurrent.futures import ProcessPoolExecutor, as_completed, ThreadPoolExecutor | |
# Load environment variables from .env file | |
# load_dotenv() | |
# Initialize ProcessPoolExecutor for parallel processing | |
executor = ThreadPoolExecutor(max_workers=3) | |
torch.cuda.empty_cache() | |
class AnimationConfig: | |
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded): | |
self.driven_audio = driven_audio_path | |
self.source_image = source_image_path | |
self.ref_eyeblink = None | |
self.ref_pose = None | |
self.checkpoint_dir = './checkpoints' | |
self.result_dir = result_folder | |
self.pose_style = pose_style | |
self.batch_size = 2 | |
self.expression_scale = expression_scale | |
self.input_yaw = None | |
self.input_pitch = None | |
self.input_roll = None | |
self.enhancer = enhancer | |
self.background_enhancer = None | |
self.cpu = False | |
self.face3dvis = False | |
self.still = still | |
self.preprocess = preprocess | |
self.verbose = False | |
self.old_version = False | |
self.net_recon = 'resnet50' | |
self.init_path = None | |
self.use_last_fc = False | |
self.bfm_folder = './checkpoints/BFM_Fitting/' | |
self.bfm_model = 'BFM_model_front.mat' | |
self.focal = 1015. | |
self.center = 112. | |
self.camera_d = 10. | |
self.z_near = 5. | |
self.z_far = 15. | |
self.device = 'cuda' | |
self.image_hardcoded = image_hardcoded | |
app = Flask(__name__) | |
# CORS(app) | |
TEMP_DIR = None | |
start_time = None | |
future_to_chunk = {} | |
app.config['temp_response'] = None | |
app.config['generation_thread'] = None | |
app.config['text_prompt'] = None | |
app.config['final_video_path'] = None | |
app.config['final_video_duration'] = None | |
# Global paths | |
dir_path = os.path.dirname(os.path.realpath(__file__)) | |
current_root_path = dir_path | |
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat') | |
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth') | |
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting') | |
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth') | |
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth') | |
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml') | |
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth') | |
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml') | |
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar') | |
# Function for running the actual task (using preprocessed data) | |
def process_chunk(audio_chunk, preprocessed_data, args): | |
print("Entered Process Chunk Function") | |
global audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint | |
global free_view_checkpoint | |
if args.preprocess == 'full': | |
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00109-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml') | |
else: | |
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml') | |
first_coeff_path = preprocessed_data["first_coeff_path"] | |
crop_pic_path = preprocessed_data["crop_pic_path"] | |
crop_info_path = preprocessed_data["crop_info"] | |
with open(crop_info_path , "rb") as f: | |
crop_info = pickle.load(f) | |
print(f"Loaded existing preprocessed data") | |
print("first_coeff_path",first_coeff_path) | |
print("crop_pic_path",crop_pic_path) | |
print("crop_info",crop_info) | |
torch.cuda.empty_cache() | |
batch = get_data(first_coeff_path, audio_chunk, args.device, ref_eyeblink_coeff_path=None, still=args.still) | |
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, | |
audio2exp_checkpoint, audio2exp_yaml_path, | |
wav2lip_checkpoint, args.device) | |
coeff_path = audio_to_coeff.generate(batch, args.result_dir, args.pose_style, ref_pose_coeff_path=None) | |
# Further processing with animate_from_coeff using the coeff_path | |
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, | |
facerender_yaml_path, args.device) | |
torch.cuda.empty_cache() | |
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_chunk, | |
args.batch_size, args.input_yaw, args.input_pitch, args.input_roll, | |
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess) | |
torch.cuda.empty_cache() | |
print("Will Enter Animation") | |
result, base64_video, temp_file_path, _ = animate_from_coeff.generate(data, args.result_dir, args.source_image, crop_info, | |
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess) | |
# video_clip = mp.VideoFileClip(temp_file_path) | |
# duration = video_clip.duration | |
app.config['temp_response'] = base64_video | |
app.config['final_video_path'] = temp_file_path | |
# app.config['final_video_duration'] = duration | |
torch.cuda.empty_cache() | |
return base64_video, temp_file_path | |
def create_temp_dir(): | |
return tempfile.TemporaryDirectory() | |
def save_uploaded_file(file, filename,TEMP_DIR): | |
print("Entered save_uploaded_file") | |
unique_filename = str(uuid.uuid4()) + "_" + filename | |
file_path = os.path.join(TEMP_DIR.name, unique_filename) | |
file.save(file_path) | |
return file_path | |
def custom_cleanup(temp_dir): | |
# Iterate over the files and directories in TEMP_DIR | |
for filename in os.listdir(temp_dir): | |
file_path = os.path.join(temp_dir, filename) | |
if os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
else: | |
os.remove(file_path) | |
print(f"Deleted: {file_path}") | |
torch.cuda.empty_cache() | |
import gc | |
gc.collect() | |
def generate_audio(voice_cloning, voice_gender, text_prompt): | |
print("generate_audio") | |
if voice_cloning == 'no': | |
if voice_gender == 'male': | |
voice = 'echo' | |
print('Entering Audio creation using elevenlabs') | |
set_api_key('92e149985ea2732b4359c74346c3daee') | |
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
for chunk in audio: | |
temp_file.write(chunk) | |
driven_audio_path = temp_file.name | |
print('driven_audio_path',driven_audio_path) | |
print('Audio file saved using elevenlabs') | |
else: | |
voice = 'nova' | |
print('Entering Audio creation using whisper') | |
response = client.audio.speech.create(model="tts-1-hd", | |
voice=voice, | |
input = text_prompt) | |
print('Audio created using whisper') | |
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
driven_audio_path = temp_file.name | |
response.write_to_file(driven_audio_path) | |
print('Audio file saved using whisper') | |
elif voice_cloning == 'yes': | |
set_api_key('92e149985ea2732b4359c74346c3daee') | |
# voice = clone(name = "User Cloned Voice", | |
# files = [user_voice_path] ) | |
voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings( | |
stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),) | |
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
for chunk in audio: | |
temp_file.write(chunk) | |
driven_audio_path = temp_file.name | |
print('driven_audio_path',driven_audio_path) | |
return driven_audio_path | |
# Preprocessing step that runs only once | |
def run_preprocessing(args): | |
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting | |
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir') | |
os.makedirs(first_frame_dir, exist_ok=True) | |
# Check if preprocessed data already exists | |
fixed_temp_dir = "C:/Users/fd01076/Downloads/preprocess_data" | |
os.makedirs(fixed_temp_dir, exist_ok=True) | |
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl") | |
if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes": | |
with open(preprocessed_data_path, "rb") as f: | |
preprocessed_data = pickle.load(f) | |
print("Loaded existing preprocessed data from:", preprocessed_data_path) | |
else: | |
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, args.device) | |
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(args.source_image, first_frame_dir, args.preprocess, source_image_flag=True) | |
if not first_coeff_path: | |
raise Exception("Failed to get coefficients") | |
# Save the preprocessed data | |
preprocessed_data = { | |
"first_coeff_path": first_coeff_path, | |
"crop_pic_path": crop_pic_path, | |
"crop_info": crop_info | |
} | |
with open(preprocessed_data_path, "wb") as f: | |
pickle.dump(preprocessed_data, f) | |
return preprocessed_data | |
client = OpenAI(api_key="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") | |
def openai_chat_avatar(text_prompt): | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[{"role": "system", "content": "Ensure answers are concise, human-like, and clear while maintaining quality. Use the fewest possible words, avoiding unnecessary articles, prepositions, and adjectives. Responses should be short but still address the question thoroughly without being verbose.Keep them to one sentence only"}, | |
{"role": "user", "content": f"Hi! I need help with something. {text_prompt}"}, | |
], | |
max_tokens = len(text_prompt) + 300 # Use the length of the input text | |
# temperature=0.3, | |
# stop=["Translate:", "Text:"] | |
) | |
return response | |
def split_audio(audio_path, chunk_duration): | |
audio_clip = mp.AudioFileClip(audio_path) | |
total_duration = audio_clip.duration | |
audio_chunks = [] | |
for start_time in range(0, int(total_duration), chunk_duration): | |
end_time = min(start_time + chunk_duration, total_duration) | |
chunk = audio_clip.subclip(start_time, end_time) | |
with tempfile.NamedTemporaryFile(suffix=f"_chunk_{start_time}-{end_time}.wav", prefix="audio_chunk_", dir=TEMP_DIR.name, delete=False) as temp_file: | |
chunk_path = temp_file.name | |
chunk.write_audiofile(chunk_path) | |
audio_chunks.append((start_time, chunk_path)) | |
return audio_chunks | |
# Generator function to yield chunk results as they are processed | |
def generate_chunks(audio_chunks, preprocessed_data, args): | |
global TEMP_DIR | |
future_to_chunk = {executor.submit(process_chunk, chunk[1], preprocessed_data, args): chunk[0] for chunk in audio_chunks} | |
try: | |
for future in as_completed(future_to_chunk): | |
idx = future_to_chunk[future] # Get the original chunk that was processed | |
try: | |
base64_video, temp_file_path = future.result() # Get the result of the completed task | |
yield json.dumps({'start_time': idx, 'base64_video': base64_video}).encode('utf-8') | |
except Exception as e: | |
yield f"Task for chunk {idx} failed: {e}\n" | |
finally: | |
if TEMP_DIR: | |
custom_cleanup(TEMP_DIR.name) | |
def parallel_processing(): | |
global start_time, future_to_chunk | |
start_time = time.time() | |
global TEMP_DIR | |
global audio_chunks | |
TEMP_DIR = create_temp_dir() | |
print('request:',request.method) | |
try: | |
if request.method == 'POST': | |
# source_image = request.files['source_image'] | |
image_path = '/home/user/app/images/out.jpg' | |
source_image = Image.open(image_path) | |
text_prompt = request.form['text_prompt'] | |
print('Input text prompt: ',text_prompt) | |
text_prompt = text_prompt.strip() | |
if not text_prompt: | |
return jsonify({'error': 'Input text prompt cannot be blank'}), 400 | |
voice_cloning = request.form.get('voice_cloning', 'yes') | |
image_hardcoded = request.form.get('image_hardcoded', 'no') | |
chat_model_used = request.form.get('chat_model_used', 'openai') | |
target_language = request.form.get('target_language', 'original_text') | |
print('target_language',target_language) | |
pose_style = int(request.form.get('pose_style', 1)) | |
expression_scale = float(request.form.get('expression_scale', 1)) | |
enhancer = request.form.get('enhancer', None) | |
voice_gender = request.form.get('voice_gender', 'male') | |
still_str = request.form.get('still', 'False') | |
still = still_str.lower() == 'false' | |
print('still', still) | |
preprocess = request.form.get('preprocess', 'crop') | |
print('preprocess selected: ',preprocess) | |
# ref_pose_video = request.files.get('ref_pose', None) | |
# response = openai_chat_avatar(text_prompt) | |
# text_prompt = response.choices[0].message.content.strip() | |
app.config['text_prompt'] = text_prompt | |
print('Final output text prompt using openai: ',text_prompt) | |
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR) | |
print(source_image_path) | |
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt) | |
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name) | |
result_folder = os.path.join(save_dir, "results") | |
os.makedirs(result_folder, exist_ok=True) | |
ref_pose_video_path = None | |
# if ref_pose_video: | |
# with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
# ref_pose_video_path = temp_file.name | |
# ref_pose_video.save(ref_pose_video_path) | |
# print('ref_pose_video_path',ref_pose_video_path) | |
except Exception as e: | |
app.logger.error(f"An error occurred: {e}") | |
return jsonify({'status': 'error', 'message': str(e)}), 500 | |
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded) | |
preprocessed_data = run_preprocessing(args) | |
chunk_duration = 3 | |
print(f"Splitting the audio into {chunk_duration}-second chunks...") | |
audio_chunks = split_audio(driven_audio_path, chunk_duration=chunk_duration) | |
print(f"Audio has been split into {len(audio_chunks)} chunks: {audio_chunks}") | |
# future_to_chunk = {executor.submit(process_chunk, chunk[1], preprocessed_data, args): chunk[0] for chunk in audio_chunks} | |
# return jsonify({"status": "processing started"}), 200 | |
try: | |
return stream_with_context(generate_chunks(audio_chunks, preprocessed_data, args)) | |
# base64_video, temp_file_path, duration = process_chunk(driven_audio_path, preprocessed_data, args) | |
except Exception as e: | |
return jsonify({'status': 'error', 'message': str(e)}), 500 | |
# @app.route("/stream", methods=["GET"]) | |
# def stream_results(): | |
# global future_to_chunk | |
# def generate(): | |
# for future in as_completed(future_to_chunk): | |
# idx = future_to_chunk[future] | |
# try: | |
# base64_video, temp_file_path = future.result() | |
# yield json.dumps({'start_time': idx, 'path': temp_file_path}).encode('utf-8') | |
# except Exception as e: | |
# yield json.dumps({'start_time': idx, 'error': str(e)}).encode('utf-8') | |
# return stream_with_context(generate()) | |
def health_status(): | |
response = {"online": "true"} | |
return jsonify(response) | |
if __name__ == '__main__': | |
app.run(debug=True) | |