Spaces:
Paused
Paused
from flask import Flask, request, jsonify, stream_with_context, send_file, send_from_directory, Response | |
import asyncio | |
import torch | |
import shutil | |
import os | |
import sys | |
from time import strftime | |
from src.utils.preprocess import CropAndExtract | |
from src.test_audio2coeff import Audio2Coeff | |
from src.facerender.animate import AnimateFromCoeff | |
from src.generate_batch import get_data | |
from src.generate_facerender_batch import get_facerender_data | |
# from src.utils.init_path import init_path | |
import tempfile | |
from openai import OpenAI | |
import elevenlabs | |
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings | |
import uuid | |
import time | |
from PIL import Image | |
import moviepy.editor as mp | |
import requests | |
import json | |
import pickle | |
# from dotenv import load_dotenv | |
from concurrent.futures import ProcessPoolExecutor, as_completed, ThreadPoolExecutor | |
from stream_server import add_video,HLS_DIR, generate_m3u8 | |
import math | |
# Load environment variables from .env file | |
# load_dotenv() | |
# Initialize ProcessPoolExecutor for parallel processing | |
executor = ThreadPoolExecutor(max_workers=2) | |
torch.cuda.empty_cache() | |
class AnimationConfig: | |
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded): | |
self.driven_audio = driven_audio_path | |
self.source_image = source_image_path | |
self.ref_eyeblink = None | |
self.ref_pose = None | |
self.checkpoint_dir = './checkpoints' | |
self.result_dir = result_folder | |
self.pose_style = pose_style | |
self.batch_size = 2 | |
self.expression_scale = expression_scale | |
self.input_yaw = None | |
self.input_pitch = None | |
self.input_roll = None | |
self.enhancer = enhancer | |
self.background_enhancer = None | |
self.cpu = False | |
self.face3dvis = False | |
self.still = still | |
self.preprocess = preprocess | |
self.verbose = False | |
self.old_version = False | |
self.net_recon = 'resnet50' | |
self.init_path = None | |
self.use_last_fc = False | |
self.bfm_folder = './checkpoints/BFM_Fitting/' | |
self.bfm_model = 'BFM_model_front.mat' | |
self.focal = 1015. | |
self.center = 112. | |
self.camera_d = 10. | |
self.z_near = 5. | |
self.z_far = 15. | |
self.device = 'cuda' | |
self.image_hardcoded = image_hardcoded | |
app = Flask(__name__) | |
from flask_cors import CORS | |
CORS(app,origins=["*"]) | |
TEMP_DIR = None | |
start_time = None | |
audio_chunks = [] | |
preprocessed_data = None | |
args = None | |
unique_id = None | |
m3u8_path = None | |
audio_duration = None | |
driven_audio_path = None | |
app.config['temp_response'] = None | |
app.config['generation_thread'] = None | |
app.config['text_prompt'] = None | |
app.config['final_video_path'] = None | |
app.config['final_video_duration'] = None | |
# Global paths | |
dir_path = os.path.dirname(os.path.realpath(__file__)) | |
current_root_path = dir_path | |
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat') | |
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth') | |
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting') | |
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth') | |
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth') | |
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml') | |
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth') | |
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml') | |
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar') | |
# Function for running the actual task (using preprocessed data) | |
def process_chunk(audio_chunk, preprocessed_data, args): | |
print("Entered Process Chunk Function") | |
global audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint | |
global free_view_checkpoint | |
if args.preprocess == 'full': | |
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00109-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml') | |
else: | |
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml') | |
first_coeff_path = preprocessed_data["first_coeff_path"] | |
crop_pic_path = preprocessed_data["crop_pic_path"] | |
crop_info_path = "/home/user/app/preprocess_data/crop_info.json" | |
with open(crop_info_path , "rb") as f: | |
crop_info = json.load(f) | |
print(f"Loaded existing preprocessed data") | |
print("first_coeff_path",first_coeff_path) | |
print("crop_pic_path",crop_pic_path) | |
print("crop_info",crop_info) | |
torch.cuda.empty_cache() | |
batch = get_data(first_coeff_path, audio_chunk, args.device, ref_eyeblink_coeff_path=None, still=args.still) | |
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, | |
audio2exp_checkpoint, audio2exp_yaml_path, | |
wav2lip_checkpoint, args.device) | |
coeff_path = audio_to_coeff.generate(batch, args.result_dir, args.pose_style, ref_pose_coeff_path=None) | |
# Further processing with animate_from_coeff using the coeff_path | |
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, | |
facerender_yaml_path, args.device) | |
torch.cuda.empty_cache() | |
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_chunk, | |
args.batch_size, args.input_yaw, args.input_pitch, args.input_roll, | |
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess) | |
torch.cuda.empty_cache() | |
print("Will Enter Animation") | |
result, base64_video, temp_file_path, _ = animate_from_coeff.generate(data, args.result_dir, args.source_image, crop_info, | |
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess) | |
# video_clip = mp.VideoFileClip(temp_file_path) | |
# duration = video_clip.duration | |
app.config['temp_response'] = base64_video | |
app.config['final_video_path'] = temp_file_path | |
# app.config['final_video_duration'] = duration | |
torch.cuda.empty_cache() | |
return base64_video, temp_file_path | |
def create_temp_dir(): | |
return tempfile.TemporaryDirectory() | |
def save_uploaded_file(file, filename,TEMP_DIR): | |
print("Entered save_uploaded_file") | |
unique_filename = str(uuid.uuid4()) + "_" + filename | |
file_path = os.path.join(TEMP_DIR.name, unique_filename) | |
file.save(file_path) | |
return file_path | |
def custom_cleanup(temp_dir): | |
# Iterate over the files and directories in TEMP_DIR | |
for filename in os.listdir(temp_dir): | |
file_path = os.path.join(temp_dir, filename) | |
if os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
else: | |
os.remove(file_path) | |
print(f"Deleted: {file_path}") | |
torch.cuda.empty_cache() | |
import gc | |
gc.collect() | |
# def get_audio_duration(audio_path): | |
# audio_clip = mp.AudioFileClip(audio_path) | |
# duration_in_seconds = audio_clip.duration | |
# audio_clip.close() # Don't forget to close the clip | |
# return duration_in_seconds | |
def generate_audio(voice_cloning, voice_gender, text_prompt): | |
print("generate_audio") | |
if voice_cloning == 'no': | |
if voice_gender == 'male': | |
voice = 'echo' | |
print('Entering Audio creation using elevenlabs') | |
set_api_key('92e149985ea2732b4359c74346c3daee') | |
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
for chunk in audio: | |
temp_file.write(chunk) | |
driven_audio_path = temp_file.name | |
print('driven_audio_path',driven_audio_path) | |
print('Audio file saved using elevenlabs') | |
else: | |
voice = 'nova' | |
print('Entering Audio creation using whisper') | |
response = client.audio.speech.create(model="tts-1-hd", | |
voice=voice, | |
input = text_prompt) | |
print('Audio created using whisper') | |
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
driven_audio_path = temp_file.name | |
response.write_to_file(driven_audio_path) | |
print('Audio file saved using whisper') | |
elif voice_cloning == 'yes': | |
set_api_key('92e149985ea2732b4359c74346c3daee') | |
# voice = clone(name = "User Cloned Voice", | |
# files = [user_voice_path] ) | |
voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings( | |
stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),) | |
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
for chunk in audio: | |
temp_file.write(chunk) | |
driven_audio_path = temp_file.name | |
print('driven_audio_path',driven_audio_path) | |
# audio_duration = get_audio_duration(driven_audio_path) | |
# print('Total Audio Duration in seconds',audio_duration) | |
return driven_audio_path | |
def run_preprocessing(args): | |
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting | |
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir') | |
os.makedirs(first_frame_dir, exist_ok=True) | |
fixed_temp_dir = "/home/user/app/preprocess_data/" | |
os.makedirs(fixed_temp_dir, exist_ok=True) | |
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl") | |
if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes": | |
print("Loading preprocessed data...") | |
with open(preprocessed_data_path, "rb") as f: | |
preprocessed_data = pickle.load(f) | |
print("Loaded existing preprocessed data from:", preprocessed_data_path) | |
return preprocessed_data | |
client = OpenAI(api_key="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") | |
def openai_chat_avatar(text_prompt): | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[{"role": "system", "content": "Ensure answers are concise, human-like, and clear while maintaining quality. Use the fewest possible words, avoiding unnecessary articles, prepositions, and adjectives. Responses should be short but still address the question thoroughly without being verbose.Keep them to one sentence only"}, | |
{"role": "user", "content": f"Hi! I need help with something. {text_prompt}"}, | |
], | |
max_tokens = len(text_prompt) + 300 # Use the length of the input text | |
# temperature=0.3, | |
# stop=["Translate:", "Text:"] | |
) | |
return response | |
def split_audio(audio_path, TEMP_DIR, chunk_duration): | |
audio_clip = mp.AudioFileClip(audio_path) | |
total_duration = audio_clip.duration | |
print("split_audio duration:",total_duration) | |
number_of_chunks = math.ceil(total_duration / chunk_duration) | |
print("Number of audio chunks:",number_of_chunks) | |
audio_chunks = [] | |
for i in range(number_of_chunks): | |
start_time = i * chunk_duration | |
end_time = min(start_time + chunk_duration, total_duration) | |
chunk = audio_clip.subclip(start_time, end_time) | |
# Create a temporary file for the chunk | |
with tempfile.NamedTemporaryFile(suffix=f"_chunk_{start_time}-{end_time}.wav", prefix="audio_chunk_", dir=TEMP_DIR.name, delete=False) as temp_file: | |
chunk_path = temp_file.name | |
chunk.write_audiofile(chunk_path) # Specify codec if needed | |
audio_chunks.append((start_time, chunk_path)) | |
audio_clip.close() # Close the audio clip to release resources | |
return audio_chunks, total_duration | |
# def extract_order_from_path(temp_file_path): | |
# match = re.search(r'videostream(\d+)', temp_file_path) | |
# return int(match.group(1)) if match else -1 # Return -1 if no match is found, handle appropriately. | |
# Generator function to yield chunk results as they are processed | |
def generate_chunks(audio_chunks, preprocessed_data, args, m3u8_path, audio_duration, start_time): | |
global TEMP_DIR | |
future_to_chunk = {executor.submit(process_chunk, chunk[1], preprocessed_data, args): chunk[0] for chunk in audio_chunks} | |
processed_chunks = {chunk[0]: None for chunk in audio_chunks} | |
print("processed_chunks:",processed_chunks) | |
yielded_count = 1 | |
try: | |
for chunk_idx, future in enumerate(as_completed(future_to_chunk)): | |
idx = future_to_chunk[future] | |
try: | |
base64_video, temp_file_path = future.result() | |
processed_chunks[idx] = temp_file_path | |
for expected_start_time in sorted(processed_chunks.keys()): | |
if processed_chunks[expected_start_time] is not None: | |
add_video(processed_chunks[expected_start_time], m3u8_path, audio_duration) | |
end_time = time.time() | |
elapsed_time = end_time - start_time | |
event_data = json.dumps({ | |
'start_time': expected_start_time, | |
'video_index': yielded_count, | |
'elapsed_time': elapsed_time | |
}) | |
yield f"data: {event_data}\n\n" | |
processed_chunks[expected_start_time] = None | |
yielded_count += 1 | |
else: | |
break | |
except Exception as e: | |
yield f"Task for chunk {idx} failed: {e}\n" | |
finally: | |
if TEMP_DIR: | |
#close_m3u8(m3u8_path) | |
custom_cleanup(TEMP_DIR.name) | |
def close_m3u8(m3u8_path: str): | |
try: | |
with open(m3u8_path, 'a') as m3u8_file: | |
m3u8_file.write('#EXT-X-ENDLIST\n') | |
print(f"Closed m3u8 file with end tag: {m3u8_path}") | |
except Exception as e: | |
print(f"Error closing m3u8 file: {e}") | |
def parallel_processing(): | |
global start_time, driven_audio_path | |
global audio_chunks, preprocessed_data, args, m3u8_path, audio_duration | |
start_time = time.time() | |
global TEMP_DIR | |
TEMP_DIR = create_temp_dir() | |
global unique_id | |
unique_id = str(uuid.uuid4()) | |
print('request:',request.method) | |
try: | |
if request.method == 'POST': | |
# source_image = request.files['source_image'] | |
image_path = '/home/user/app/images/marc_smile_enhanced.jpg' | |
source_image = Image.open(image_path) | |
text_prompt = request.form['text_prompt'] | |
print('Input text prompt: ',text_prompt) | |
text_prompt = text_prompt.strip() | |
if not text_prompt: | |
return jsonify({'error': 'Input text prompt cannot be blank'}), 400 | |
voice_cloning = request.form.get('voice_cloning', 'yes') | |
image_hardcoded = request.form.get('image_hardcoded', 'no') | |
chat_model_used = request.form.get('chat_model_used', 'openai') | |
target_language = request.form.get('target_language', 'original_text') | |
print('target_language',target_language) | |
pose_style = int(request.form.get('pose_style', 1)) | |
expression_scale = float(request.form.get('expression_scale', 1)) | |
enhancer = request.form.get('enhancer', None) | |
voice_gender = request.form.get('voice_gender', 'male') | |
still_str = request.form.get('still', 'False') | |
still = still_str.lower() == 'false' | |
print('still', still) | |
preprocess = request.form.get('preprocess', 'crop') | |
print('preprocess selected: ',preprocess) | |
# ref_pose_video = request.files.get('ref_pose', None) | |
response = openai_chat_avatar(text_prompt) | |
text_prompt = response.choices[0].message.content.strip() | |
app.config['text_prompt'] = text_prompt | |
print('Final output text prompt using openai: ',text_prompt) | |
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR) | |
print(source_image_path) | |
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt) | |
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name) | |
result_folder = os.path.join(save_dir, "results") | |
os.makedirs(result_folder, exist_ok=True) | |
ref_pose_video_path = None | |
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded) | |
preprocessed_data = run_preprocessing(args) | |
# chunk_duration = 3 | |
# print(f"Splitting the audio into {chunk_duration}-second chunks...") | |
# audio_chunks, audio_duration = split_audio(driven_audio_path, TEMP_DIR, chunk_duration=chunk_duration) | |
# print(f"Audio has been split into {len(audio_chunks)} chunks: {audio_chunks}") | |
start_time = 0 | |
audio_clip = mp.AudioFileClip(driven_audio_path) | |
audio_duration = audio_clip.duration | |
audio_chunks.append((start_time, driven_audio_path)) | |
os.makedirs('lives', exist_ok=True) | |
print("Entering generate m3u8") | |
m3u8_path = f'lives/{unique_id}.m3u8' | |
#generate_m3u8(audio_duration, m3u8_path) | |
return jsonify({'video_url': f'{unique_id}.m3u8'}), 200 | |
except Exception as e: | |
app.logger.error(f"An error occurred: {e}") | |
return jsonify({'status': 'error', 'message': str(e)}), 500 | |
def stream_results(): | |
global audio_chunks, preprocessed_data, args, m3u8_path, audio_duration, start_time | |
print("audio_chunks",audio_chunks) | |
print("preprocessed_data",preprocessed_data) | |
print("args",args) | |
try: | |
return Response(stream_with_context(generate_chunks(audio_chunks, preprocessed_data, args, m3u8_path, audio_duration, start_time)),content_type='text/event-stream') | |
except Exception as e: | |
return jsonify({'status': 'error', 'message': str(e)}), 500 | |
async def get_concatenated_playlist(playlist: str): | |
""" | |
Endpoint to serve the concatenated HLS playlist. | |
Returns: | |
FileResponse: The concatenated playlist file. | |
""" | |
if playlist.endswith('.ts'): | |
playlist_path = os.path.join('hls_videos', playlist) | |
else: | |
playlist_path = os.path.join('lives', playlist) | |
if not os.path.exists(playlist_path): | |
return jsonify({'status': 'error', "msg":"Playlist not found"}), 404 | |
return send_file(playlist_path, mimetype='application/vnd.apple.mpegurl') | |
# @app.route("/live_stream/<string:filename>", methods=["GET"]) | |
# def live_stream(filename): | |
# return send_from_directory(directory="hls_videos", filename=filename) | |
def health_status(): | |
response = {"online": "true"} | |
return jsonify(response) | |
if __name__ == '__main__': | |
app.run(debug=True) | |