Spaces:
Paused
Paused
Update videoretalking/third_part/face3d/models/__init__.py
Browse files
videoretalking/third_part/face3d/models/__init__.py
CHANGED
@@ -1,67 +1,67 @@
|
|
1 |
-
"""This package contains modules related to objective functions, optimizations, and network architectures.
|
2 |
-
|
3 |
-
To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
|
4 |
-
You need to implement the following five functions:
|
5 |
-
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
|
6 |
-
-- <set_input>: unpack data from dataset and apply preprocessing.
|
7 |
-
-- <forward>: produce intermediate results.
|
8 |
-
-- <optimize_parameters>: calculate loss, gradients, and update network weights.
|
9 |
-
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
|
10 |
-
|
11 |
-
In the function <__init__>, you need to define four lists:
|
12 |
-
-- self.loss_names (str list): specify the training losses that you want to plot and save.
|
13 |
-
-- self.model_names (str list): define networks used in our training.
|
14 |
-
-- self.visual_names (str list): specify the images that you want to display and save.
|
15 |
-
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
|
16 |
-
|
17 |
-
Now you can use the model class by specifying flag '--model dummy'.
|
18 |
-
See our template model class 'template_model.py' for more details.
|
19 |
-
"""
|
20 |
-
|
21 |
-
import importlib
|
22 |
-
from face3d.models.base_model import BaseModel
|
23 |
-
|
24 |
-
|
25 |
-
def find_model_using_name(model_name):
|
26 |
-
"""Import the module "models/[model_name]_model.py".
|
27 |
-
|
28 |
-
In the file, the class called DatasetNameModel() will
|
29 |
-
be instantiated. It has to be a subclass of BaseModel,
|
30 |
-
and it is case-insensitive.
|
31 |
-
"""
|
32 |
-
model_filename = "face3d.models." + model_name + "_model"
|
33 |
-
modellib = importlib.import_module(model_filename)
|
34 |
-
model = None
|
35 |
-
target_model_name = model_name.replace('_', '') + 'model'
|
36 |
-
for name, cls in modellib.__dict__.items():
|
37 |
-
if name.lower() == target_model_name.lower() \
|
38 |
-
and issubclass(cls, BaseModel):
|
39 |
-
model = cls
|
40 |
-
|
41 |
-
if model is None:
|
42 |
-
print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
|
43 |
-
exit(0)
|
44 |
-
|
45 |
-
return model
|
46 |
-
|
47 |
-
|
48 |
-
def get_option_setter(model_name):
|
49 |
-
"""Return the static method <modify_commandline_options> of the model class."""
|
50 |
-
model_class = find_model_using_name(model_name)
|
51 |
-
return model_class.modify_commandline_options
|
52 |
-
|
53 |
-
|
54 |
-
def create_model(opt):
|
55 |
-
"""Create a model given the option.
|
56 |
-
|
57 |
-
This function warps the class CustomDatasetDataLoader.
|
58 |
-
This is the main interface between this package and 'train.py'/'test.py'
|
59 |
-
|
60 |
-
Example:
|
61 |
-
>>> from models import create_model
|
62 |
-
>>> model = create_model(opt)
|
63 |
-
"""
|
64 |
-
model = find_model_using_name(opt.model)
|
65 |
-
instance = model(opt)
|
66 |
-
print("model [%s] was created" % type(instance).__name__)
|
67 |
-
return instance
|
|
|
1 |
+
"""This package contains modules related to objective functions, optimizations, and network architectures.
|
2 |
+
|
3 |
+
To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
|
4 |
+
You need to implement the following five functions:
|
5 |
+
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
|
6 |
+
-- <set_input>: unpack data from dataset and apply preprocessing.
|
7 |
+
-- <forward>: produce intermediate results.
|
8 |
+
-- <optimize_parameters>: calculate loss, gradients, and update network weights.
|
9 |
+
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
|
10 |
+
|
11 |
+
In the function <__init__>, you need to define four lists:
|
12 |
+
-- self.loss_names (str list): specify the training losses that you want to plot and save.
|
13 |
+
-- self.model_names (str list): define networks used in our training.
|
14 |
+
-- self.visual_names (str list): specify the images that you want to display and save.
|
15 |
+
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
|
16 |
+
|
17 |
+
Now you can use the model class by specifying flag '--model dummy'.
|
18 |
+
See our template model class 'template_model.py' for more details.
|
19 |
+
"""
|
20 |
+
|
21 |
+
import importlib
|
22 |
+
from videoretalking.third_part.face3d.models.base_model import BaseModel
|
23 |
+
|
24 |
+
|
25 |
+
def find_model_using_name(model_name):
|
26 |
+
"""Import the module "models/[model_name]_model.py".
|
27 |
+
|
28 |
+
In the file, the class called DatasetNameModel() will
|
29 |
+
be instantiated. It has to be a subclass of BaseModel,
|
30 |
+
and it is case-insensitive.
|
31 |
+
"""
|
32 |
+
model_filename = "face3d.models." + model_name + "_model"
|
33 |
+
modellib = importlib.import_module(model_filename)
|
34 |
+
model = None
|
35 |
+
target_model_name = model_name.replace('_', '') + 'model'
|
36 |
+
for name, cls in modellib.__dict__.items():
|
37 |
+
if name.lower() == target_model_name.lower() \
|
38 |
+
and issubclass(cls, BaseModel):
|
39 |
+
model = cls
|
40 |
+
|
41 |
+
if model is None:
|
42 |
+
print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
|
43 |
+
exit(0)
|
44 |
+
|
45 |
+
return model
|
46 |
+
|
47 |
+
|
48 |
+
def get_option_setter(model_name):
|
49 |
+
"""Return the static method <modify_commandline_options> of the model class."""
|
50 |
+
model_class = find_model_using_name(model_name)
|
51 |
+
return model_class.modify_commandline_options
|
52 |
+
|
53 |
+
|
54 |
+
def create_model(opt):
|
55 |
+
"""Create a model given the option.
|
56 |
+
|
57 |
+
This function warps the class CustomDatasetDataLoader.
|
58 |
+
This is the main interface between this package and 'train.py'/'test.py'
|
59 |
+
|
60 |
+
Example:
|
61 |
+
>>> from models import create_model
|
62 |
+
>>> model = create_model(opt)
|
63 |
+
"""
|
64 |
+
model = find_model_using_name(opt.model)
|
65 |
+
instance = model(opt)
|
66 |
+
print("model [%s] was created" % type(instance).__name__)
|
67 |
+
return instance
|