Spanicin commited on
Commit
13e641e
·
verified ·
1 Parent(s): 5048131

Update videoretalking/third_part/face3d/models/__init__.py

Browse files
videoretalking/third_part/face3d/models/__init__.py CHANGED
@@ -1,67 +1,67 @@
1
- """This package contains modules related to objective functions, optimizations, and network architectures.
2
-
3
- To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
4
- You need to implement the following five functions:
5
- -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
6
- -- <set_input>: unpack data from dataset and apply preprocessing.
7
- -- <forward>: produce intermediate results.
8
- -- <optimize_parameters>: calculate loss, gradients, and update network weights.
9
- -- <modify_commandline_options>: (optionally) add model-specific options and set default options.
10
-
11
- In the function <__init__>, you need to define four lists:
12
- -- self.loss_names (str list): specify the training losses that you want to plot and save.
13
- -- self.model_names (str list): define networks used in our training.
14
- -- self.visual_names (str list): specify the images that you want to display and save.
15
- -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
16
-
17
- Now you can use the model class by specifying flag '--model dummy'.
18
- See our template model class 'template_model.py' for more details.
19
- """
20
-
21
- import importlib
22
- from face3d.models.base_model import BaseModel
23
-
24
-
25
- def find_model_using_name(model_name):
26
- """Import the module "models/[model_name]_model.py".
27
-
28
- In the file, the class called DatasetNameModel() will
29
- be instantiated. It has to be a subclass of BaseModel,
30
- and it is case-insensitive.
31
- """
32
- model_filename = "face3d.models." + model_name + "_model"
33
- modellib = importlib.import_module(model_filename)
34
- model = None
35
- target_model_name = model_name.replace('_', '') + 'model'
36
- for name, cls in modellib.__dict__.items():
37
- if name.lower() == target_model_name.lower() \
38
- and issubclass(cls, BaseModel):
39
- model = cls
40
-
41
- if model is None:
42
- print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
43
- exit(0)
44
-
45
- return model
46
-
47
-
48
- def get_option_setter(model_name):
49
- """Return the static method <modify_commandline_options> of the model class."""
50
- model_class = find_model_using_name(model_name)
51
- return model_class.modify_commandline_options
52
-
53
-
54
- def create_model(opt):
55
- """Create a model given the option.
56
-
57
- This function warps the class CustomDatasetDataLoader.
58
- This is the main interface between this package and 'train.py'/'test.py'
59
-
60
- Example:
61
- >>> from models import create_model
62
- >>> model = create_model(opt)
63
- """
64
- model = find_model_using_name(opt.model)
65
- instance = model(opt)
66
- print("model [%s] was created" % type(instance).__name__)
67
- return instance
 
1
+ """This package contains modules related to objective functions, optimizations, and network architectures.
2
+
3
+ To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
4
+ You need to implement the following five functions:
5
+ -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
6
+ -- <set_input>: unpack data from dataset and apply preprocessing.
7
+ -- <forward>: produce intermediate results.
8
+ -- <optimize_parameters>: calculate loss, gradients, and update network weights.
9
+ -- <modify_commandline_options>: (optionally) add model-specific options and set default options.
10
+
11
+ In the function <__init__>, you need to define four lists:
12
+ -- self.loss_names (str list): specify the training losses that you want to plot and save.
13
+ -- self.model_names (str list): define networks used in our training.
14
+ -- self.visual_names (str list): specify the images that you want to display and save.
15
+ -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
16
+
17
+ Now you can use the model class by specifying flag '--model dummy'.
18
+ See our template model class 'template_model.py' for more details.
19
+ """
20
+
21
+ import importlib
22
+ from videoretalking.third_part.face3d.models.base_model import BaseModel
23
+
24
+
25
+ def find_model_using_name(model_name):
26
+ """Import the module "models/[model_name]_model.py".
27
+
28
+ In the file, the class called DatasetNameModel() will
29
+ be instantiated. It has to be a subclass of BaseModel,
30
+ and it is case-insensitive.
31
+ """
32
+ model_filename = "face3d.models." + model_name + "_model"
33
+ modellib = importlib.import_module(model_filename)
34
+ model = None
35
+ target_model_name = model_name.replace('_', '') + 'model'
36
+ for name, cls in modellib.__dict__.items():
37
+ if name.lower() == target_model_name.lower() \
38
+ and issubclass(cls, BaseModel):
39
+ model = cls
40
+
41
+ if model is None:
42
+ print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
43
+ exit(0)
44
+
45
+ return model
46
+
47
+
48
+ def get_option_setter(model_name):
49
+ """Return the static method <modify_commandline_options> of the model class."""
50
+ model_class = find_model_using_name(model_name)
51
+ return model_class.modify_commandline_options
52
+
53
+
54
+ def create_model(opt):
55
+ """Create a model given the option.
56
+
57
+ This function warps the class CustomDatasetDataLoader.
58
+ This is the main interface between this package and 'train.py'/'test.py'
59
+
60
+ Example:
61
+ >>> from models import create_model
62
+ >>> model = create_model(opt)
63
+ """
64
+ model = find_model_using_name(opt.model)
65
+ instance = model(opt)
66
+ print("model [%s] was created" % type(instance).__name__)
67
+ return instance