Spanicin commited on
Commit
345871e
·
verified ·
1 Parent(s): cfc39a0

Upload 12 files

Browse files
videoretalking/third_part/face_detection/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ The code for Face Detection in this folder has been taken from the wonderful [face_alignment](https://github.com/1adrianb/face-alignment) repository. This has been modified to take batches of faces at a time.
videoretalking/third_part/face_detection/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ __author__ = """Adrian Bulat"""
4
+ __email__ = 'adrian.bulat@nottingham.ac.uk'
5
+ __version__ = '1.0.1'
6
+
7
+ from .api import FaceAlignment, LandmarksType, NetworkSize
videoretalking/third_part/face_detection/api.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ import torch
4
+ from torch.utils.model_zoo import load_url
5
+ from enum import Enum
6
+ import numpy as np
7
+ import cv2
8
+ try:
9
+ import urllib.request as request_file
10
+ except BaseException:
11
+ import urllib as request_file
12
+
13
+ from .models import FAN, ResNetDepth
14
+ from .utils import *
15
+
16
+
17
+ class LandmarksType(Enum):
18
+ """Enum class defining the type of landmarks to detect.
19
+
20
+ ``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
21
+ ``_2halfD`` - this points represent the projection of the 3D points into 3D
22
+ ``_3D`` - detect the points ``(x,y,z)``` in a 3D space
23
+
24
+ """
25
+ _2D = 1
26
+ _2halfD = 2
27
+ _3D = 3
28
+
29
+
30
+ class NetworkSize(Enum):
31
+ # TINY = 1
32
+ # SMALL = 2
33
+ # MEDIUM = 3
34
+ LARGE = 4
35
+
36
+ def __new__(cls, value):
37
+ member = object.__new__(cls)
38
+ member._value_ = value
39
+ return member
40
+
41
+ def __int__(self):
42
+ return self.value
43
+
44
+ ROOT = os.path.dirname(os.path.abspath(__file__))
45
+
46
+ class FaceAlignment:
47
+ def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
48
+ device='cuda', flip_input=False, face_detector='sfd', verbose=False):
49
+ self.device = device
50
+ self.flip_input = flip_input
51
+ self.landmarks_type = landmarks_type
52
+ self.verbose = verbose
53
+
54
+ network_size = int(network_size)
55
+
56
+ if 'cuda' in device:
57
+ torch.backends.cudnn.benchmark = True
58
+
59
+ # Get the face detector
60
+ face_detector_module = __import__('face_detection.detection.' + face_detector,
61
+ globals(), locals(), [face_detector], 0)
62
+ self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose)
63
+
64
+ def get_detections_for_batch(self, images):
65
+ images = images[..., ::-1]
66
+ detected_faces = self.face_detector.detect_from_batch(images.copy())
67
+ results = []
68
+
69
+ for i, d in enumerate(detected_faces):
70
+ if len(d) == 0:
71
+ results.append(None)
72
+ continue
73
+ d = d[0]
74
+ d = np.clip(d, 0, None)
75
+
76
+ x1, y1, x2, y2 = map(int, d[:-1])
77
+ results.append((x1, y1, x2, y2))
78
+
79
+ return results
videoretalking/third_part/face_detection/detection/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .core import FaceDetector
videoretalking/third_part/face_detection/detection/core.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import glob
3
+ from tqdm import tqdm
4
+ import numpy as np
5
+ import torch
6
+ import cv2
7
+
8
+
9
+ class FaceDetector(object):
10
+ """An abstract class representing a face detector.
11
+
12
+ Any other face detection implementation must subclass it. All subclasses
13
+ must implement ``detect_from_image``, that return a list of detected
14
+ bounding boxes. Optionally, for speed considerations detect from path is
15
+ recommended.
16
+ """
17
+
18
+ def __init__(self, device, verbose):
19
+ self.device = device
20
+ self.verbose = verbose
21
+
22
+ if verbose:
23
+ if 'cpu' in device:
24
+ logger = logging.getLogger(__name__)
25
+ logger.warning("Detection running on CPU, this may be potentially slow.")
26
+
27
+ if 'cpu' not in device and 'cuda' not in device:
28
+ if verbose:
29
+ logger.error("Expected values for device are: {cpu, cuda} but got: %s", device)
30
+ raise ValueError
31
+
32
+ def detect_from_image(self, tensor_or_path):
33
+ """Detects faces in a given image.
34
+
35
+ This function detects the faces present in a provided BGR(usually)
36
+ image. The input can be either the image itself or the path to it.
37
+
38
+ Arguments:
39
+ tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path
40
+ to an image or the image itself.
41
+
42
+ Example::
43
+
44
+ >>> path_to_image = 'data/image_01.jpg'
45
+ ... detected_faces = detect_from_image(path_to_image)
46
+ [A list of bounding boxes (x1, y1, x2, y2)]
47
+ >>> image = cv2.imread(path_to_image)
48
+ ... detected_faces = detect_from_image(image)
49
+ [A list of bounding boxes (x1, y1, x2, y2)]
50
+
51
+ """
52
+ raise NotImplementedError
53
+
54
+ def detect_from_directory(self, path, extensions=['.jpg', '.png'], recursive=False, show_progress_bar=True):
55
+ """Detects faces from all the images present in a given directory.
56
+
57
+ Arguments:
58
+ path {string} -- a string containing a path that points to the folder containing the images
59
+
60
+ Keyword Arguments:
61
+ extensions {list} -- list of string containing the extensions to be
62
+ consider in the following format: ``.extension_name`` (default:
63
+ {['.jpg', '.png']}) recursive {bool} -- option wherever to scan the
64
+ folder recursively (default: {False}) show_progress_bar {bool} --
65
+ display a progressbar (default: {True})
66
+
67
+ Example:
68
+ >>> directory = 'data'
69
+ ... detected_faces = detect_from_directory(directory)
70
+ {A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]}
71
+
72
+ """
73
+ if self.verbose:
74
+ logger = logging.getLogger(__name__)
75
+
76
+ if len(extensions) == 0:
77
+ if self.verbose:
78
+ logger.error("Expected at list one extension, but none was received.")
79
+ raise ValueError
80
+
81
+ if self.verbose:
82
+ logger.info("Constructing the list of images.")
83
+ additional_pattern = '/**/*' if recursive else '/*'
84
+ files = []
85
+ for extension in extensions:
86
+ files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive))
87
+
88
+ if self.verbose:
89
+ logger.info("Finished searching for images. %s images found", len(files))
90
+ logger.info("Preparing to run the detection.")
91
+
92
+ predictions = {}
93
+ for image_path in tqdm(files, disable=not show_progress_bar):
94
+ if self.verbose:
95
+ logger.info("Running the face detector on image: %s", image_path)
96
+ predictions[image_path] = self.detect_from_image(image_path)
97
+
98
+ if self.verbose:
99
+ logger.info("The detector was successfully run on all %s images", len(files))
100
+
101
+ return predictions
102
+
103
+ @property
104
+ def reference_scale(self):
105
+ raise NotImplementedError
106
+
107
+ @property
108
+ def reference_x_shift(self):
109
+ raise NotImplementedError
110
+
111
+ @property
112
+ def reference_y_shift(self):
113
+ raise NotImplementedError
114
+
115
+ @staticmethod
116
+ def tensor_or_path_to_ndarray(tensor_or_path, rgb=True):
117
+ """Convert path (represented as a string) or torch.tensor to a numpy.ndarray
118
+
119
+ Arguments:
120
+ tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself
121
+ """
122
+ if isinstance(tensor_or_path, str):
123
+ return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1]
124
+ elif torch.is_tensor(tensor_or_path):
125
+ # Call cpu in case its coming from cuda
126
+ return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy()
127
+ elif isinstance(tensor_or_path, np.ndarray):
128
+ return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path
129
+ else:
130
+ raise TypeError
videoretalking/third_part/face_detection/detection/sfd/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .sfd_detector import SFDDetector as FaceDetector
videoretalking/third_part/face_detection/detection/sfd/bbox.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ import sys
4
+ import cv2
5
+ import random
6
+ import datetime
7
+ import time
8
+ import math
9
+ import argparse
10
+ import numpy as np
11
+ import torch
12
+
13
+ try:
14
+ from iou import IOU
15
+ except BaseException:
16
+ # IOU cython speedup 10x
17
+ def IOU(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2):
18
+ sa = abs((ax2 - ax1) * (ay2 - ay1))
19
+ sb = abs((bx2 - bx1) * (by2 - by1))
20
+ x1, y1 = max(ax1, bx1), max(ay1, by1)
21
+ x2, y2 = min(ax2, bx2), min(ay2, by2)
22
+ w = x2 - x1
23
+ h = y2 - y1
24
+ if w < 0 or h < 0:
25
+ return 0.0
26
+ else:
27
+ return 1.0 * w * h / (sa + sb - w * h)
28
+
29
+
30
+ def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh):
31
+ xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1
32
+ dx, dy = (xc - axc) / aww, (yc - ayc) / ahh
33
+ dw, dh = math.log(ww / aww), math.log(hh / ahh)
34
+ return dx, dy, dw, dh
35
+
36
+
37
+ def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh):
38
+ xc, yc = dx * aww + axc, dy * ahh + ayc
39
+ ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh
40
+ x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2
41
+ return x1, y1, x2, y2
42
+
43
+
44
+ def nms(dets, thresh):
45
+ if 0 == len(dets):
46
+ return []
47
+ x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
48
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
49
+ order = scores.argsort()[::-1]
50
+
51
+ keep = []
52
+ while order.size > 0:
53
+ i = order[0]
54
+ keep.append(i)
55
+ xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]])
56
+ xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]])
57
+
58
+ w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1)
59
+ ovr = w * h / (areas[i] + areas[order[1:]] - w * h)
60
+
61
+ inds = np.where(ovr <= thresh)[0]
62
+ order = order[inds + 1]
63
+
64
+ return keep
65
+
66
+
67
+ def encode(matched, priors, variances):
68
+ """Encode the variances from the priorbox layers into the ground truth boxes
69
+ we have matched (based on jaccard overlap) with the prior boxes.
70
+ Args:
71
+ matched: (tensor) Coords of ground truth for each prior in point-form
72
+ Shape: [num_priors, 4].
73
+ priors: (tensor) Prior boxes in center-offset form
74
+ Shape: [num_priors,4].
75
+ variances: (list[float]) Variances of priorboxes
76
+ Return:
77
+ encoded boxes (tensor), Shape: [num_priors, 4]
78
+ """
79
+
80
+ # dist b/t match center and prior's center
81
+ g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
82
+ # encode variance
83
+ g_cxcy /= (variances[0] * priors[:, 2:])
84
+ # match wh / prior wh
85
+ g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
86
+ g_wh = torch.log(g_wh) / variances[1]
87
+ # return target for smooth_l1_loss
88
+ return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
89
+
90
+
91
+ def decode(loc, priors, variances):
92
+ """Decode locations from predictions using priors to undo
93
+ the encoding we did for offset regression at train time.
94
+ Args:
95
+ loc (tensor): location predictions for loc layers,
96
+ Shape: [num_priors,4]
97
+ priors (tensor): Prior boxes in center-offset form.
98
+ Shape: [num_priors,4].
99
+ variances: (list[float]) Variances of priorboxes
100
+ Return:
101
+ decoded bounding box predictions
102
+ """
103
+
104
+ boxes = torch.cat((
105
+ priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
106
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
107
+ boxes[:, :2] -= boxes[:, 2:] / 2
108
+ boxes[:, 2:] += boxes[:, :2]
109
+ return boxes
110
+
111
+ def batch_decode(loc, priors, variances):
112
+ """Decode locations from predictions using priors to undo
113
+ the encoding we did for offset regression at train time.
114
+ Args:
115
+ loc (tensor): location predictions for loc layers,
116
+ Shape: [num_priors,4]
117
+ priors (tensor): Prior boxes in center-offset form.
118
+ Shape: [num_priors,4].
119
+ variances: (list[float]) Variances of priorboxes
120
+ Return:
121
+ decoded bounding box predictions
122
+ """
123
+
124
+ boxes = torch.cat((
125
+ priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:],
126
+ priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2)
127
+ boxes[:, :, :2] -= boxes[:, :, 2:] / 2
128
+ boxes[:, :, 2:] += boxes[:, :, :2]
129
+ return boxes
videoretalking/third_part/face_detection/detection/sfd/detect.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+
4
+ import os
5
+ import sys
6
+ import cv2
7
+ import random
8
+ import datetime
9
+ import math
10
+ import argparse
11
+ import numpy as np
12
+
13
+ import scipy.io as sio
14
+ import zipfile
15
+ from .net_s3fd import s3fd
16
+ from .bbox import *
17
+
18
+
19
+ def detect(net, img, device):
20
+ img = img - np.array([104, 117, 123])
21
+ img = img.transpose(2, 0, 1)
22
+ img = img.reshape((1,) + img.shape)
23
+
24
+ if 'cuda' in device:
25
+ torch.backends.cudnn.benchmark = True
26
+
27
+ img = torch.from_numpy(img).float().to(device)
28
+ BB, CC, HH, WW = img.size()
29
+ with torch.no_grad():
30
+ olist = net(img)
31
+
32
+ bboxlist = []
33
+ for i in range(len(olist) // 2):
34
+ olist[i * 2] = F.softmax(olist[i * 2], dim=1)
35
+ olist = [oelem.data.cpu() for oelem in olist]
36
+ for i in range(len(olist) // 2):
37
+ ocls, oreg = olist[i * 2], olist[i * 2 + 1]
38
+ FB, FC, FH, FW = ocls.size() # feature map size
39
+ stride = 2**(i + 2) # 4,8,16,32,64,128
40
+ anchor = stride * 4
41
+ poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
42
+ for Iindex, hindex, windex in poss:
43
+ axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
44
+ score = ocls[0, 1, hindex, windex]
45
+ loc = oreg[0, :, hindex, windex].contiguous().view(1, 4)
46
+ priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]])
47
+ variances = [0.1, 0.2]
48
+ box = decode(loc, priors, variances)
49
+ x1, y1, x2, y2 = box[0] * 1.0
50
+ # cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
51
+ bboxlist.append([x1, y1, x2, y2, score])
52
+ bboxlist = np.array(bboxlist)
53
+ if 0 == len(bboxlist):
54
+ bboxlist = np.zeros((1, 5))
55
+
56
+ return bboxlist
57
+
58
+ def batch_detect(net, imgs, device):
59
+ imgs = imgs - np.array([104, 117, 123])
60
+ imgs = imgs.transpose(0, 3, 1, 2)
61
+
62
+ if 'cuda' in device:
63
+ torch.backends.cudnn.benchmark = True
64
+
65
+ imgs = torch.from_numpy(imgs).float().to(device)
66
+ BB, CC, HH, WW = imgs.size()
67
+ with torch.no_grad():
68
+ # print(type(net),type(imgs), device)
69
+ olist = net(imgs)
70
+
71
+ bboxlist = []
72
+ for i in range(len(olist) // 2):
73
+ olist[i * 2] = F.softmax(olist[i * 2], dim=1)
74
+ # print(olist)
75
+ # import pdb; pdb.set_trace()
76
+ olist = [oelem.cpu() for oelem in olist]
77
+ for i in range(len(olist) // 2):
78
+ ocls, oreg = olist[i * 2], olist[i * 2 + 1]
79
+ FB, FC, FH, FW = ocls.size() # feature map size
80
+ stride = 2**(i + 2) # 4,8,16,32,64,128
81
+ anchor = stride * 4
82
+ poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
83
+ for Iindex, hindex, windex in poss:
84
+ axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
85
+ score = ocls[:, 1, hindex, windex]
86
+ loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4)
87
+ priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4)
88
+ variances = [0.1, 0.2]
89
+ box = batch_decode(loc, priors, variances)
90
+ box = box[:, 0] * 1.0
91
+ # cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
92
+ bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy())
93
+ bboxlist = np.array(bboxlist)
94
+ if 0 == len(bboxlist):
95
+ bboxlist = np.zeros((1, BB, 5))
96
+
97
+ return bboxlist
98
+
99
+ def flip_detect(net, img, device):
100
+ img = cv2.flip(img, 1)
101
+ b = detect(net, img, device)
102
+
103
+ bboxlist = np.zeros(b.shape)
104
+ bboxlist[:, 0] = img.shape[1] - b[:, 2]
105
+ bboxlist[:, 1] = b[:, 1]
106
+ bboxlist[:, 2] = img.shape[1] - b[:, 0]
107
+ bboxlist[:, 3] = b[:, 3]
108
+ bboxlist[:, 4] = b[:, 4]
109
+ return bboxlist
110
+
111
+
112
+ def pts_to_bb(pts):
113
+ min_x, min_y = np.min(pts, axis=0)
114
+ max_x, max_y = np.max(pts, axis=0)
115
+ return np.array([min_x, min_y, max_x, max_y])
videoretalking/third_part/face_detection/detection/sfd/net_s3fd.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ class L2Norm(nn.Module):
7
+ def __init__(self, n_channels, scale=1.0):
8
+ super(L2Norm, self).__init__()
9
+ self.n_channels = n_channels
10
+ self.scale = scale
11
+ self.eps = 1e-10
12
+ self.weight = nn.Parameter(torch.Tensor(self.n_channels))
13
+ self.weight.data *= 0.0
14
+ self.weight.data += self.scale
15
+
16
+ def forward(self, x):
17
+ norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
18
+ x = x / norm * self.weight.view(1, -1, 1, 1)
19
+ return x
20
+
21
+
22
+ class s3fd(nn.Module):
23
+ def __init__(self):
24
+ super(s3fd, self).__init__()
25
+ self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
26
+ self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
27
+
28
+ self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
29
+ self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
30
+
31
+ self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
32
+ self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
33
+ self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
34
+
35
+ self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
36
+ self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
37
+ self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
38
+
39
+ self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
40
+ self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
41
+ self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
42
+
43
+ self.fc6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=3)
44
+ self.fc7 = nn.Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)
45
+
46
+ self.conv6_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
47
+ self.conv6_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
48
+
49
+ self.conv7_1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0)
50
+ self.conv7_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
51
+
52
+ self.conv3_3_norm = L2Norm(256, scale=10)
53
+ self.conv4_3_norm = L2Norm(512, scale=8)
54
+ self.conv5_3_norm = L2Norm(512, scale=5)
55
+
56
+ self.conv3_3_norm_mbox_conf = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
57
+ self.conv3_3_norm_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
58
+ self.conv4_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
59
+ self.conv4_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
60
+ self.conv5_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
61
+ self.conv5_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
62
+
63
+ self.fc7_mbox_conf = nn.Conv2d(1024, 2, kernel_size=3, stride=1, padding=1)
64
+ self.fc7_mbox_loc = nn.Conv2d(1024, 4, kernel_size=3, stride=1, padding=1)
65
+ self.conv6_2_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
66
+ self.conv6_2_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
67
+ self.conv7_2_mbox_conf = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1)
68
+ self.conv7_2_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
69
+
70
+ def forward(self, x):
71
+ h = F.relu(self.conv1_1(x))
72
+ h = F.relu(self.conv1_2(h))
73
+ h = F.max_pool2d(h, 2, 2)
74
+
75
+ h = F.relu(self.conv2_1(h))
76
+ h = F.relu(self.conv2_2(h))
77
+ h = F.max_pool2d(h, 2, 2)
78
+
79
+ h = F.relu(self.conv3_1(h))
80
+ h = F.relu(self.conv3_2(h))
81
+ h = F.relu(self.conv3_3(h))
82
+ f3_3 = h
83
+ h = F.max_pool2d(h, 2, 2)
84
+
85
+ h = F.relu(self.conv4_1(h))
86
+ h = F.relu(self.conv4_2(h))
87
+ h = F.relu(self.conv4_3(h))
88
+ f4_3 = h
89
+ h = F.max_pool2d(h, 2, 2)
90
+
91
+ h = F.relu(self.conv5_1(h))
92
+ h = F.relu(self.conv5_2(h))
93
+ h = F.relu(self.conv5_3(h))
94
+ f5_3 = h
95
+ h = F.max_pool2d(h, 2, 2)
96
+
97
+ h = F.relu(self.fc6(h))
98
+ h = F.relu(self.fc7(h))
99
+ ffc7 = h
100
+ h = F.relu(self.conv6_1(h))
101
+ h = F.relu(self.conv6_2(h))
102
+ f6_2 = h
103
+ h = F.relu(self.conv7_1(h))
104
+ h = F.relu(self.conv7_2(h))
105
+ f7_2 = h
106
+
107
+ f3_3 = self.conv3_3_norm(f3_3)
108
+ f4_3 = self.conv4_3_norm(f4_3)
109
+ f5_3 = self.conv5_3_norm(f5_3)
110
+
111
+ cls1 = self.conv3_3_norm_mbox_conf(f3_3)
112
+ reg1 = self.conv3_3_norm_mbox_loc(f3_3)
113
+ cls2 = self.conv4_3_norm_mbox_conf(f4_3)
114
+ reg2 = self.conv4_3_norm_mbox_loc(f4_3)
115
+ cls3 = self.conv5_3_norm_mbox_conf(f5_3)
116
+ reg3 = self.conv5_3_norm_mbox_loc(f5_3)
117
+ cls4 = self.fc7_mbox_conf(ffc7)
118
+ reg4 = self.fc7_mbox_loc(ffc7)
119
+ cls5 = self.conv6_2_mbox_conf(f6_2)
120
+ reg5 = self.conv6_2_mbox_loc(f6_2)
121
+ cls6 = self.conv7_2_mbox_conf(f7_2)
122
+ reg6 = self.conv7_2_mbox_loc(f7_2)
123
+
124
+ # max-out background label
125
+ chunk = torch.chunk(cls1, 4, 1)
126
+ bmax = torch.max(torch.max(chunk[0], chunk[1]), chunk[2])
127
+ cls1 = torch.cat([bmax, chunk[3]], dim=1)
128
+
129
+ return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6]
videoretalking/third_part/face_detection/detection/sfd/sfd_detector.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ from torch.utils.model_zoo import load_url
4
+
5
+ from ..core import FaceDetector
6
+
7
+ from .net_s3fd import s3fd
8
+ from .bbox import *
9
+ from .detect import *
10
+
11
+ models_urls = {
12
+ 's3fd': 'https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth',
13
+ }
14
+
15
+
16
+ class SFDDetector(FaceDetector):
17
+ def __init__(self, device, path_to_detector='/apdcephfs/share_1290939/shadowcun/pretrained/s3fd.pth', verbose=False):
18
+ super(SFDDetector, self).__init__(device, verbose)
19
+
20
+ # Initialise the face detector
21
+ if not os.path.isfile(path_to_detector):
22
+ model_weights = load_url(models_urls['s3fd'])
23
+ else:
24
+ model_weights = torch.load(path_to_detector)
25
+
26
+ self.face_detector = s3fd()
27
+ self.face_detector.load_state_dict(model_weights)
28
+ self.face_detector.to(device)
29
+ self.face_detector.eval()
30
+
31
+ def detect_from_image(self, tensor_or_path):
32
+ image = self.tensor_or_path_to_ndarray(tensor_or_path)
33
+
34
+ bboxlist = detect(self.face_detector, image, device=self.device)
35
+ keep = nms(bboxlist, 0.3)
36
+ bboxlist = bboxlist[keep, :]
37
+ bboxlist = [x for x in bboxlist if x[-1] > 0.5]
38
+
39
+ return bboxlist
40
+
41
+ def detect_from_batch(self, images):
42
+ bboxlists = batch_detect(self.face_detector, images, device=self.device)
43
+ keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])]
44
+ bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)]
45
+ bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists]
46
+
47
+ return bboxlists
48
+
49
+ @property
50
+ def reference_scale(self):
51
+ return 195
52
+
53
+ @property
54
+ def reference_x_shift(self):
55
+ return 0
56
+
57
+ @property
58
+ def reference_y_shift(self):
59
+ return 0
videoretalking/third_part/face_detection/models.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import math
5
+
6
+
7
+ def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
8
+ "3x3 convolution with padding"
9
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3,
10
+ stride=strd, padding=padding, bias=bias)
11
+
12
+
13
+ class ConvBlock(nn.Module):
14
+ def __init__(self, in_planes, out_planes):
15
+ super(ConvBlock, self).__init__()
16
+ self.bn1 = nn.BatchNorm2d(in_planes)
17
+ self.conv1 = conv3x3(in_planes, int(out_planes / 2))
18
+ self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
19
+ self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4))
20
+ self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
21
+ self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4))
22
+
23
+ if in_planes != out_planes:
24
+ self.downsample = nn.Sequential(
25
+ nn.BatchNorm2d(in_planes),
26
+ nn.ReLU(True),
27
+ nn.Conv2d(in_planes, out_planes,
28
+ kernel_size=1, stride=1, bias=False),
29
+ )
30
+ else:
31
+ self.downsample = None
32
+
33
+ def forward(self, x):
34
+ residual = x
35
+
36
+ out1 = self.bn1(x)
37
+ out1 = F.relu(out1, True)
38
+ out1 = self.conv1(out1)
39
+
40
+ out2 = self.bn2(out1)
41
+ out2 = F.relu(out2, True)
42
+ out2 = self.conv2(out2)
43
+
44
+ out3 = self.bn3(out2)
45
+ out3 = F.relu(out3, True)
46
+ out3 = self.conv3(out3)
47
+
48
+ out3 = torch.cat((out1, out2, out3), 1)
49
+
50
+ if self.downsample is not None:
51
+ residual = self.downsample(residual)
52
+
53
+ out3 += residual
54
+
55
+ return out3
56
+
57
+
58
+ class Bottleneck(nn.Module):
59
+
60
+ expansion = 4
61
+
62
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
63
+ super(Bottleneck, self).__init__()
64
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
65
+ self.bn1 = nn.BatchNorm2d(planes)
66
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
67
+ padding=1, bias=False)
68
+ self.bn2 = nn.BatchNorm2d(planes)
69
+ self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
70
+ self.bn3 = nn.BatchNorm2d(planes * 4)
71
+ self.relu = nn.ReLU(inplace=True)
72
+ self.downsample = downsample
73
+ self.stride = stride
74
+
75
+ def forward(self, x):
76
+ residual = x
77
+
78
+ out = self.conv1(x)
79
+ out = self.bn1(out)
80
+ out = self.relu(out)
81
+
82
+ out = self.conv2(out)
83
+ out = self.bn2(out)
84
+ out = self.relu(out)
85
+
86
+ out = self.conv3(out)
87
+ out = self.bn3(out)
88
+
89
+ if self.downsample is not None:
90
+ residual = self.downsample(x)
91
+
92
+ out += residual
93
+ out = self.relu(out)
94
+
95
+ return out
96
+
97
+
98
+ class HourGlass(nn.Module):
99
+ def __init__(self, num_modules, depth, num_features):
100
+ super(HourGlass, self).__init__()
101
+ self.num_modules = num_modules
102
+ self.depth = depth
103
+ self.features = num_features
104
+
105
+ self._generate_network(self.depth)
106
+
107
+ def _generate_network(self, level):
108
+ self.add_module('b1_' + str(level), ConvBlock(self.features, self.features))
109
+
110
+ self.add_module('b2_' + str(level), ConvBlock(self.features, self.features))
111
+
112
+ if level > 1:
113
+ self._generate_network(level - 1)
114
+ else:
115
+ self.add_module('b2_plus_' + str(level), ConvBlock(self.features, self.features))
116
+
117
+ self.add_module('b3_' + str(level), ConvBlock(self.features, self.features))
118
+
119
+ def _forward(self, level, inp):
120
+ # Upper branch
121
+ up1 = inp
122
+ up1 = self._modules['b1_' + str(level)](up1)
123
+
124
+ # Lower branch
125
+ low1 = F.avg_pool2d(inp, 2, stride=2)
126
+ low1 = self._modules['b2_' + str(level)](low1)
127
+
128
+ if level > 1:
129
+ low2 = self._forward(level - 1, low1)
130
+ else:
131
+ low2 = low1
132
+ low2 = self._modules['b2_plus_' + str(level)](low2)
133
+
134
+ low3 = low2
135
+ low3 = self._modules['b3_' + str(level)](low3)
136
+
137
+ up2 = F.interpolate(low3, scale_factor=2, mode='nearest')
138
+
139
+ return up1 + up2
140
+
141
+ def forward(self, x):
142
+ return self._forward(self.depth, x)
143
+
144
+
145
+ class FAN(nn.Module):
146
+
147
+ def __init__(self, num_modules=1):
148
+ super(FAN, self).__init__()
149
+ self.num_modules = num_modules
150
+
151
+ # Base part
152
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
153
+ self.bn1 = nn.BatchNorm2d(64)
154
+ self.conv2 = ConvBlock(64, 128)
155
+ self.conv3 = ConvBlock(128, 128)
156
+ self.conv4 = ConvBlock(128, 256)
157
+
158
+ # Stacking part
159
+ for hg_module in range(self.num_modules):
160
+ self.add_module('m' + str(hg_module), HourGlass(1, 4, 256))
161
+ self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256))
162
+ self.add_module('conv_last' + str(hg_module),
163
+ nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
164
+ self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
165
+ self.add_module('l' + str(hg_module), nn.Conv2d(256,
166
+ 68, kernel_size=1, stride=1, padding=0))
167
+
168
+ if hg_module < self.num_modules - 1:
169
+ self.add_module(
170
+ 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
171
+ self.add_module('al' + str(hg_module), nn.Conv2d(68,
172
+ 256, kernel_size=1, stride=1, padding=0))
173
+
174
+ def forward(self, x):
175
+ x = F.relu(self.bn1(self.conv1(x)), True)
176
+ x = F.avg_pool2d(self.conv2(x), 2, stride=2)
177
+ x = self.conv3(x)
178
+ x = self.conv4(x)
179
+
180
+ previous = x
181
+
182
+ outputs = []
183
+ for i in range(self.num_modules):
184
+ hg = self._modules['m' + str(i)](previous)
185
+
186
+ ll = hg
187
+ ll = self._modules['top_m_' + str(i)](ll)
188
+
189
+ ll = F.relu(self._modules['bn_end' + str(i)]
190
+ (self._modules['conv_last' + str(i)](ll)), True)
191
+
192
+ # Predict heatmaps
193
+ tmp_out = self._modules['l' + str(i)](ll)
194
+ outputs.append(tmp_out)
195
+
196
+ if i < self.num_modules - 1:
197
+ ll = self._modules['bl' + str(i)](ll)
198
+ tmp_out_ = self._modules['al' + str(i)](tmp_out)
199
+ previous = previous + ll + tmp_out_
200
+
201
+ return outputs
202
+
203
+
204
+ class ResNetDepth(nn.Module):
205
+
206
+ def __init__(self, block=Bottleneck, layers=[3, 8, 36, 3], num_classes=68):
207
+ self.inplanes = 64
208
+ super(ResNetDepth, self).__init__()
209
+ self.conv1 = nn.Conv2d(3 + 68, 64, kernel_size=7, stride=2, padding=3,
210
+ bias=False)
211
+ self.bn1 = nn.BatchNorm2d(64)
212
+ self.relu = nn.ReLU(inplace=True)
213
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
214
+ self.layer1 = self._make_layer(block, 64, layers[0])
215
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
216
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
217
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
218
+ self.avgpool = nn.AvgPool2d(7)
219
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
220
+
221
+ for m in self.modules():
222
+ if isinstance(m, nn.Conv2d):
223
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
224
+ m.weight.data.normal_(0, math.sqrt(2. / n))
225
+ elif isinstance(m, nn.BatchNorm2d):
226
+ m.weight.data.fill_(1)
227
+ m.bias.data.zero_()
228
+
229
+ def _make_layer(self, block, planes, blocks, stride=1):
230
+ downsample = None
231
+ if stride != 1 or self.inplanes != planes * block.expansion:
232
+ downsample = nn.Sequential(
233
+ nn.Conv2d(self.inplanes, planes * block.expansion,
234
+ kernel_size=1, stride=stride, bias=False),
235
+ nn.BatchNorm2d(planes * block.expansion),
236
+ )
237
+
238
+ layers = []
239
+ layers.append(block(self.inplanes, planes, stride, downsample))
240
+ self.inplanes = planes * block.expansion
241
+ for i in range(1, blocks):
242
+ layers.append(block(self.inplanes, planes))
243
+
244
+ return nn.Sequential(*layers)
245
+
246
+ def forward(self, x):
247
+ x = self.conv1(x)
248
+ x = self.bn1(x)
249
+ x = self.relu(x)
250
+ x = self.maxpool(x)
251
+
252
+ x = self.layer1(x)
253
+ x = self.layer2(x)
254
+ x = self.layer3(x)
255
+ x = self.layer4(x)
256
+
257
+ x = self.avgpool(x)
258
+ x = x.view(x.size(0), -1)
259
+ x = self.fc(x)
260
+
261
+ return x
videoretalking/third_part/face_detection/utils.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ import sys
4
+ import time
5
+ import torch
6
+ import math
7
+ import numpy as np
8
+ import cv2
9
+
10
+
11
+ def _gaussian(
12
+ size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
13
+ height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
14
+ mean_vert=0.5):
15
+ # handle some defaults
16
+ if width is None:
17
+ width = size
18
+ if height is None:
19
+ height = size
20
+ if sigma_horz is None:
21
+ sigma_horz = sigma
22
+ if sigma_vert is None:
23
+ sigma_vert = sigma
24
+ center_x = mean_horz * width + 0.5
25
+ center_y = mean_vert * height + 0.5
26
+ gauss = np.empty((height, width), dtype=np.float32)
27
+ # generate kernel
28
+ for i in range(height):
29
+ for j in range(width):
30
+ gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
31
+ sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
32
+ if normalize:
33
+ gauss = gauss / np.sum(gauss)
34
+ return gauss
35
+
36
+
37
+ def draw_gaussian(image, point, sigma):
38
+ # Check if the gaussian is inside
39
+ ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)]
40
+ br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)]
41
+ if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1):
42
+ return image
43
+ size = 6 * sigma + 1
44
+ g = _gaussian(size)
45
+ g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
46
+ g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
47
+ img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
48
+ img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
49
+ assert (g_x[0] > 0 and g_y[1] > 0)
50
+ image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
51
+ ] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
52
+ image[image > 1] = 1
53
+ return image
54
+
55
+
56
+ def transform(point, center, scale, resolution, invert=False):
57
+ """Generate and affine transformation matrix.
58
+
59
+ Given a set of points, a center, a scale and a targer resolution, the
60
+ function generates and affine transformation matrix. If invert is ``True``
61
+ it will produce the inverse transformation.
62
+
63
+ Arguments:
64
+ point {torch.tensor} -- the input 2D point
65
+ center {torch.tensor or numpy.array} -- the center around which to perform the transformations
66
+ scale {float} -- the scale of the face/object
67
+ resolution {float} -- the output resolution
68
+
69
+ Keyword Arguments:
70
+ invert {bool} -- define wherever the function should produce the direct or the
71
+ inverse transformation matrix (default: {False})
72
+ """
73
+ _pt = torch.ones(3)
74
+ _pt[0] = point[0]
75
+ _pt[1] = point[1]
76
+
77
+ h = 200.0 * scale
78
+ t = torch.eye(3)
79
+ t[0, 0] = resolution / h
80
+ t[1, 1] = resolution / h
81
+ t[0, 2] = resolution * (-center[0] / h + 0.5)
82
+ t[1, 2] = resolution * (-center[1] / h + 0.5)
83
+
84
+ if invert:
85
+ t = torch.inverse(t)
86
+
87
+ new_point = (torch.matmul(t, _pt))[0:2]
88
+
89
+ return new_point.int()
90
+
91
+
92
+ def crop(image, center, scale, resolution=256.0):
93
+ """Center crops an image or set of heatmaps
94
+
95
+ Arguments:
96
+ image {numpy.array} -- an rgb image
97
+ center {numpy.array} -- the center of the object, usually the same as of the bounding box
98
+ scale {float} -- scale of the face
99
+
100
+ Keyword Arguments:
101
+ resolution {float} -- the size of the output cropped image (default: {256.0})
102
+
103
+ Returns:
104
+ [type] -- [description]
105
+ """ # Crop around the center point
106
+ """ Crops the image around the center. Input is expected to be an np.ndarray """
107
+ ul = transform([1, 1], center, scale, resolution, True)
108
+ br = transform([resolution, resolution], center, scale, resolution, True)
109
+ # pad = math.ceil(torch.norm((ul - br).float()) / 2.0 - (br[0] - ul[0]) / 2.0)
110
+ if image.ndim > 2:
111
+ newDim = np.array([br[1] - ul[1], br[0] - ul[0],
112
+ image.shape[2]], dtype=np.int32)
113
+ newImg = np.zeros(newDim, dtype=np.uint8)
114
+ else:
115
+ newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
116
+ newImg = np.zeros(newDim, dtype=np.uint8)
117
+ ht = image.shape[0]
118
+ wd = image.shape[1]
119
+ newX = np.array(
120
+ [max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
121
+ newY = np.array(
122
+ [max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
123
+ oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
124
+ oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
125
+ newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1]
126
+ ] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
127
+ newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)),
128
+ interpolation=cv2.INTER_LINEAR)
129
+ return newImg
130
+
131
+
132
+ def get_preds_fromhm(hm, center=None, scale=None):
133
+ """Obtain (x,y) coordinates given a set of N heatmaps. If the center
134
+ and the scale is provided the function will return the points also in
135
+ the original coordinate frame.
136
+
137
+ Arguments:
138
+ hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
139
+
140
+ Keyword Arguments:
141
+ center {torch.tensor} -- the center of the bounding box (default: {None})
142
+ scale {float} -- face scale (default: {None})
143
+ """
144
+ max, idx = torch.max(
145
+ hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
146
+ idx += 1
147
+ preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
148
+ preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
149
+ preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
150
+
151
+ for i in range(preds.size(0)):
152
+ for j in range(preds.size(1)):
153
+ hm_ = hm[i, j, :]
154
+ pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
155
+ if pX > 0 and pX < 63 and pY > 0 and pY < 63:
156
+ diff = torch.FloatTensor(
157
+ [hm_[pY, pX + 1] - hm_[pY, pX - 1],
158
+ hm_[pY + 1, pX] - hm_[pY - 1, pX]])
159
+ preds[i, j].add_(diff.sign_().mul_(.25))
160
+
161
+ preds.add_(-.5)
162
+
163
+ preds_orig = torch.zeros(preds.size())
164
+ if center is not None and scale is not None:
165
+ for i in range(hm.size(0)):
166
+ for j in range(hm.size(1)):
167
+ preds_orig[i, j] = transform(
168
+ preds[i, j], center, scale, hm.size(2), True)
169
+
170
+ return preds, preds_orig
171
+
172
+ def get_preds_fromhm_batch(hm, centers=None, scales=None):
173
+ """Obtain (x,y) coordinates given a set of N heatmaps. If the centers
174
+ and the scales is provided the function will return the points also in
175
+ the original coordinate frame.
176
+
177
+ Arguments:
178
+ hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
179
+
180
+ Keyword Arguments:
181
+ centers {torch.tensor} -- the centers of the bounding box (default: {None})
182
+ scales {float} -- face scales (default: {None})
183
+ """
184
+ max, idx = torch.max(
185
+ hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
186
+ idx += 1
187
+ preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
188
+ preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
189
+ preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
190
+
191
+ for i in range(preds.size(0)):
192
+ for j in range(preds.size(1)):
193
+ hm_ = hm[i, j, :]
194
+ pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
195
+ if pX > 0 and pX < 63 and pY > 0 and pY < 63:
196
+ diff = torch.FloatTensor(
197
+ [hm_[pY, pX + 1] - hm_[pY, pX - 1],
198
+ hm_[pY + 1, pX] - hm_[pY - 1, pX]])
199
+ preds[i, j].add_(diff.sign_().mul_(.25))
200
+
201
+ preds.add_(-.5)
202
+
203
+ preds_orig = torch.zeros(preds.size())
204
+ if centers is not None and scales is not None:
205
+ for i in range(hm.size(0)):
206
+ for j in range(hm.size(1)):
207
+ preds_orig[i, j] = transform(
208
+ preds[i, j], centers[i], scales[i], hm.size(2), True)
209
+
210
+ return preds, preds_orig
211
+
212
+ def shuffle_lr(parts, pairs=None):
213
+ """Shuffle the points left-right according to the axis of symmetry
214
+ of the object.
215
+
216
+ Arguments:
217
+ parts {torch.tensor} -- a 3D or 4D object containing the
218
+ heatmaps.
219
+
220
+ Keyword Arguments:
221
+ pairs {list of integers} -- [order of the flipped points] (default: {None})
222
+ """
223
+ if pairs is None:
224
+ pairs = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
225
+ 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35,
226
+ 34, 33, 32, 31, 45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41,
227
+ 40, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 55, 64, 63,
228
+ 62, 61, 60, 67, 66, 65]
229
+ if parts.ndimension() == 3:
230
+ parts = parts[pairs, ...]
231
+ else:
232
+ parts = parts[:, pairs, ...]
233
+
234
+ return parts
235
+
236
+
237
+ def flip(tensor, is_label=False):
238
+ """Flip an image or a set of heatmaps left-right
239
+
240
+ Arguments:
241
+ tensor {numpy.array or torch.tensor} -- [the input image or heatmaps]
242
+
243
+ Keyword Arguments:
244
+ is_label {bool} -- [denote wherever the input is an image or a set of heatmaps ] (default: {False})
245
+ """
246
+ if not torch.is_tensor(tensor):
247
+ tensor = torch.from_numpy(tensor)
248
+
249
+ if is_label:
250
+ tensor = shuffle_lr(tensor).flip(tensor.ndimension() - 1)
251
+ else:
252
+ tensor = tensor.flip(tensor.ndimension() - 1)
253
+
254
+ return tensor
255
+
256
+ # From pyzolib/paths.py (https://bitbucket.org/pyzo/pyzolib/src/tip/paths.py)
257
+
258
+
259
+ def appdata_dir(appname=None, roaming=False):
260
+ """ appdata_dir(appname=None, roaming=False)
261
+
262
+ Get the path to the application directory, where applications are allowed
263
+ to write user specific files (e.g. configurations). For non-user specific
264
+ data, consider using common_appdata_dir().
265
+ If appname is given, a subdir is appended (and created if necessary).
266
+ If roaming is True, will prefer a roaming directory (Windows Vista/7).
267
+ """
268
+
269
+ # Define default user directory
270
+ userDir = os.getenv('FACEALIGNMENT_USERDIR', None)
271
+ if userDir is None:
272
+ userDir = os.path.expanduser('~')
273
+ if not os.path.isdir(userDir): # pragma: no cover
274
+ userDir = '/var/tmp' # issue #54
275
+
276
+ # Get system app data dir
277
+ path = None
278
+ if sys.platform.startswith('win'):
279
+ path1, path2 = os.getenv('LOCALAPPDATA'), os.getenv('APPDATA')
280
+ path = (path2 or path1) if roaming else (path1 or path2)
281
+ elif sys.platform.startswith('darwin'):
282
+ path = os.path.join(userDir, 'Library', 'Application Support')
283
+ # On Linux and as fallback
284
+ if not (path and os.path.isdir(path)):
285
+ path = userDir
286
+
287
+ # Maybe we should store things local to the executable (in case of a
288
+ # portable distro or a frozen application that wants to be portable)
289
+ prefix = sys.prefix
290
+ if getattr(sys, 'frozen', None):
291
+ prefix = os.path.abspath(os.path.dirname(sys.executable))
292
+ for reldir in ('settings', '../settings'):
293
+ localpath = os.path.abspath(os.path.join(prefix, reldir))
294
+ if os.path.isdir(localpath): # pragma: no cover
295
+ try:
296
+ open(os.path.join(localpath, 'test.write'), 'wb').close()
297
+ os.remove(os.path.join(localpath, 'test.write'))
298
+ except IOError:
299
+ pass # We cannot write in this directory
300
+ else:
301
+ path = localpath
302
+ break
303
+
304
+ # Get path specific for this app
305
+ if appname:
306
+ if path == userDir:
307
+ appname = '.' + appname.lstrip('.') # Make it a hidden directory
308
+ path = os.path.join(path, appname)
309
+ if not os.path.isdir(path): # pragma: no cover
310
+ os.mkdir(path)
311
+
312
+ # Done
313
+ return path