Spaces:
Paused
Paused
Upload 7 files
Browse files- videoretalking/models/DNet.py +118 -0
- videoretalking/models/ENet.py +139 -0
- videoretalking/models/LNet.py +139 -0
- videoretalking/models/__init__.py +37 -0
- videoretalking/models/base_blocks.py +554 -0
- videoretalking/models/ffc.py +233 -0
- videoretalking/models/transformer.py +119 -0
videoretalking/models/DNet.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO
|
2 |
+
import functools
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from utils import flow_util
|
10 |
+
from models.base_blocks import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder
|
11 |
+
|
12 |
+
# DNet
|
13 |
+
class DNet(nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super(DNet, self).__init__()
|
16 |
+
self.mapping_net = MappingNet()
|
17 |
+
self.warpping_net = WarpingNet()
|
18 |
+
self.editing_net = EditingNet()
|
19 |
+
|
20 |
+
def forward(self, input_image, driving_source, stage=None):
|
21 |
+
if stage == 'warp':
|
22 |
+
descriptor = self.mapping_net(driving_source)
|
23 |
+
output = self.warpping_net(input_image, descriptor)
|
24 |
+
else:
|
25 |
+
descriptor = self.mapping_net(driving_source)
|
26 |
+
output = self.warpping_net(input_image, descriptor)
|
27 |
+
output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor)
|
28 |
+
return output
|
29 |
+
|
30 |
+
class MappingNet(nn.Module):
|
31 |
+
def __init__(self, coeff_nc=73, descriptor_nc=256, layer=3):
|
32 |
+
super( MappingNet, self).__init__()
|
33 |
+
|
34 |
+
self.layer = layer
|
35 |
+
nonlinearity = nn.LeakyReLU(0.1)
|
36 |
+
|
37 |
+
self.first = nn.Sequential(
|
38 |
+
torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True))
|
39 |
+
|
40 |
+
for i in range(layer):
|
41 |
+
net = nn.Sequential(nonlinearity,
|
42 |
+
torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3))
|
43 |
+
setattr(self, 'encoder' + str(i), net)
|
44 |
+
|
45 |
+
self.pooling = nn.AdaptiveAvgPool1d(1)
|
46 |
+
self.output_nc = descriptor_nc
|
47 |
+
|
48 |
+
def forward(self, input_3dmm):
|
49 |
+
out = self.first(input_3dmm)
|
50 |
+
for i in range(self.layer):
|
51 |
+
model = getattr(self, 'encoder' + str(i))
|
52 |
+
out = model(out) + out[:,:,3:-3]
|
53 |
+
out = self.pooling(out)
|
54 |
+
return out
|
55 |
+
|
56 |
+
class WarpingNet(nn.Module):
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
image_nc=3,
|
60 |
+
descriptor_nc=256,
|
61 |
+
base_nc=32,
|
62 |
+
max_nc=256,
|
63 |
+
encoder_layer=5,
|
64 |
+
decoder_layer=3,
|
65 |
+
use_spect=False
|
66 |
+
):
|
67 |
+
super( WarpingNet, self).__init__()
|
68 |
+
|
69 |
+
nonlinearity = nn.LeakyReLU(0.1)
|
70 |
+
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
71 |
+
kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
72 |
+
|
73 |
+
self.descriptor_nc = descriptor_nc
|
74 |
+
self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc,
|
75 |
+
max_nc, encoder_layer, decoder_layer, **kwargs)
|
76 |
+
|
77 |
+
self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc),
|
78 |
+
nonlinearity,
|
79 |
+
nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3))
|
80 |
+
|
81 |
+
self.pool = nn.AdaptiveAvgPool2d(1)
|
82 |
+
|
83 |
+
def forward(self, input_image, descriptor):
|
84 |
+
final_output={}
|
85 |
+
output = self.hourglass(input_image, descriptor)
|
86 |
+
final_output['flow_field'] = self.flow_out(output)
|
87 |
+
|
88 |
+
deformation = flow_util.convert_flow_to_deformation(final_output['flow_field'])
|
89 |
+
final_output['warp_image'] = flow_util.warp_image(input_image, deformation)
|
90 |
+
return final_output
|
91 |
+
|
92 |
+
|
93 |
+
class EditingNet(nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
image_nc=3,
|
97 |
+
descriptor_nc=256,
|
98 |
+
layer=3,
|
99 |
+
base_nc=64,
|
100 |
+
max_nc=256,
|
101 |
+
num_res_blocks=2,
|
102 |
+
use_spect=False):
|
103 |
+
super(EditingNet, self).__init__()
|
104 |
+
|
105 |
+
nonlinearity = nn.LeakyReLU(0.1)
|
106 |
+
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
107 |
+
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
108 |
+
self.descriptor_nc = descriptor_nc
|
109 |
+
|
110 |
+
# encoder part
|
111 |
+
self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs)
|
112 |
+
self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
|
113 |
+
|
114 |
+
def forward(self, input_image, warp_image, descriptor):
|
115 |
+
x = torch.cat([input_image, warp_image], 1)
|
116 |
+
x = self.encoder(x)
|
117 |
+
gen_image = self.decoder(x, descriptor)
|
118 |
+
return gen_image
|
videoretalking/models/ENet.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from models.base_blocks import ResBlock, StyleConv, ToRGB
|
6 |
+
|
7 |
+
|
8 |
+
class ENet(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
num_style_feat=512,
|
12 |
+
lnet=None,
|
13 |
+
concat=False
|
14 |
+
):
|
15 |
+
super(ENet, self).__init__()
|
16 |
+
|
17 |
+
self.low_res = lnet
|
18 |
+
for param in self.low_res.parameters():
|
19 |
+
param.requires_grad = False
|
20 |
+
|
21 |
+
channel_multiplier, narrow = 2, 1
|
22 |
+
channels = {
|
23 |
+
'4': int(512 * narrow),
|
24 |
+
'8': int(512 * narrow),
|
25 |
+
'16': int(512 * narrow),
|
26 |
+
'32': int(512 * narrow),
|
27 |
+
'64': int(256 * channel_multiplier * narrow),
|
28 |
+
'128': int(128 * channel_multiplier * narrow),
|
29 |
+
'256': int(64 * channel_multiplier * narrow),
|
30 |
+
'512': int(32 * channel_multiplier * narrow),
|
31 |
+
'1024': int(16 * channel_multiplier * narrow)
|
32 |
+
}
|
33 |
+
|
34 |
+
self.log_size = 8
|
35 |
+
first_out_size = 128
|
36 |
+
self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1) # 256 -> 128
|
37 |
+
|
38 |
+
# downsample
|
39 |
+
in_channels = channels[f'{first_out_size}']
|
40 |
+
self.conv_body_down = nn.ModuleList()
|
41 |
+
for i in range(8, 2, -1):
|
42 |
+
out_channels = channels[f'{2**(i - 1)}']
|
43 |
+
self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down'))
|
44 |
+
in_channels = out_channels
|
45 |
+
|
46 |
+
self.num_style_feat = num_style_feat
|
47 |
+
linear_out_channel = num_style_feat
|
48 |
+
self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel)
|
49 |
+
self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1)
|
50 |
+
|
51 |
+
self.style_convs = nn.ModuleList()
|
52 |
+
self.to_rgbs = nn.ModuleList()
|
53 |
+
self.noises = nn.Module()
|
54 |
+
|
55 |
+
self.concat = concat
|
56 |
+
if concat:
|
57 |
+
in_channels = 3 + 32 # channels['64']
|
58 |
+
else:
|
59 |
+
in_channels = 3
|
60 |
+
|
61 |
+
for i in range(7, 9): # 128, 256
|
62 |
+
out_channels = channels[f'{2**i}'] #
|
63 |
+
self.style_convs.append(
|
64 |
+
StyleConv(
|
65 |
+
in_channels,
|
66 |
+
out_channels,
|
67 |
+
kernel_size=3,
|
68 |
+
num_style_feat=num_style_feat,
|
69 |
+
demodulate=True,
|
70 |
+
sample_mode='upsample'))
|
71 |
+
self.style_convs.append(
|
72 |
+
StyleConv(
|
73 |
+
out_channels,
|
74 |
+
out_channels,
|
75 |
+
kernel_size=3,
|
76 |
+
num_style_feat=num_style_feat,
|
77 |
+
demodulate=True,
|
78 |
+
sample_mode=None))
|
79 |
+
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
|
80 |
+
in_channels = out_channels
|
81 |
+
|
82 |
+
def forward(self, audio_sequences, face_sequences, gt_sequences):
|
83 |
+
B = audio_sequences.size(0)
|
84 |
+
input_dim_size = len(face_sequences.size())
|
85 |
+
inp, ref = torch.split(face_sequences,3,dim=1)
|
86 |
+
|
87 |
+
if input_dim_size > 4:
|
88 |
+
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
89 |
+
inp = torch.cat([inp[:, :, i] for i in range(inp.size(2))], dim=0)
|
90 |
+
ref = torch.cat([ref[:, :, i] for i in range(ref.size(2))], dim=0)
|
91 |
+
gt_sequences = torch.cat([gt_sequences[:, :, i] for i in range(gt_sequences.size(2))], dim=0)
|
92 |
+
|
93 |
+
# get the global style
|
94 |
+
feat = F.leaky_relu_(self.conv_body_first(F.interpolate(ref, size=(256,256), mode='bilinear')), negative_slope=0.2)
|
95 |
+
for i in range(self.log_size - 2):
|
96 |
+
feat = self.conv_body_down[i](feat)
|
97 |
+
feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
|
98 |
+
|
99 |
+
# style code
|
100 |
+
style_code = self.final_linear(feat.reshape(feat.size(0), -1))
|
101 |
+
style_code = style_code.reshape(style_code.size(0), -1, self.num_style_feat)
|
102 |
+
|
103 |
+
LNet_input = torch.cat([inp, gt_sequences], dim=1)
|
104 |
+
LNet_input = F.interpolate(LNet_input, size=(96,96), mode='bilinear')
|
105 |
+
|
106 |
+
if self.concat:
|
107 |
+
low_res_img, low_res_feat = self.low_res(audio_sequences, LNet_input)
|
108 |
+
low_res_img.detach()
|
109 |
+
low_res_feat.detach()
|
110 |
+
out = torch.cat([low_res_img, low_res_feat], dim=1)
|
111 |
+
|
112 |
+
else:
|
113 |
+
low_res_img = self.low_res(audio_sequences, LNet_input)
|
114 |
+
low_res_img.detach()
|
115 |
+
# 96 x 96
|
116 |
+
out = low_res_img
|
117 |
+
|
118 |
+
p2d = (2,2,2,2)
|
119 |
+
out = F.pad(out, p2d, "reflect", 0)
|
120 |
+
skip = out
|
121 |
+
|
122 |
+
for conv1, conv2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], self.to_rgbs):
|
123 |
+
out = conv1(out, style_code) # 96, 192, 384
|
124 |
+
out = conv2(out, style_code)
|
125 |
+
skip = to_rgb(out, style_code, skip)
|
126 |
+
_outputs = skip
|
127 |
+
|
128 |
+
# remove padding
|
129 |
+
_outputs = _outputs[:,:,8:-8,8:-8]
|
130 |
+
|
131 |
+
if input_dim_size > 4:
|
132 |
+
_outputs = torch.split(_outputs, B, dim=0)
|
133 |
+
outputs = torch.stack(_outputs, dim=2)
|
134 |
+
low_res_img = F.interpolate(low_res_img, outputs.size()[3:])
|
135 |
+
low_res_img = torch.split(low_res_img, B, dim=0)
|
136 |
+
low_res_img = torch.stack(low_res_img, dim=2)
|
137 |
+
else:
|
138 |
+
outputs = _outputs
|
139 |
+
return outputs, low_res_img
|
videoretalking/models/LNet.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from models.transformer import RETURNX, Transformer
|
6 |
+
from models.base_blocks import Conv2d, LayerNorm2d, FirstBlock2d, DownBlock2d, UpBlock2d, \
|
7 |
+
FFCADAINResBlocks, Jump, FinalBlock2d
|
8 |
+
|
9 |
+
|
10 |
+
class Visual_Encoder(nn.Module):
|
11 |
+
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
12 |
+
super(Visual_Encoder, self).__init__()
|
13 |
+
self.layers = layers
|
14 |
+
self.first_inp = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
15 |
+
self.first_ref = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
16 |
+
for i in range(layers):
|
17 |
+
in_channels = min(ngf*(2**i), img_f)
|
18 |
+
out_channels = min(ngf*(2**(i+1)), img_f)
|
19 |
+
model_ref = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
20 |
+
model_inp = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
21 |
+
if i < 2:
|
22 |
+
ca_layer = RETURNX()
|
23 |
+
else:
|
24 |
+
ca_layer = Transformer(2**(i+1) * ngf,2,4,ngf,ngf*4)
|
25 |
+
setattr(self, 'ca' + str(i), ca_layer)
|
26 |
+
setattr(self, 'ref_down' + str(i), model_ref)
|
27 |
+
setattr(self, 'inp_down' + str(i), model_inp)
|
28 |
+
self.output_nc = out_channels * 2
|
29 |
+
|
30 |
+
def forward(self, maskGT, ref):
|
31 |
+
x_maskGT, x_ref = self.first_inp(maskGT), self.first_ref(ref)
|
32 |
+
out=[x_maskGT]
|
33 |
+
for i in range(self.layers):
|
34 |
+
model_ref = getattr(self, 'ref_down'+str(i))
|
35 |
+
model_inp = getattr(self, 'inp_down'+str(i))
|
36 |
+
ca_layer = getattr(self, 'ca'+str(i))
|
37 |
+
x_maskGT, x_ref = model_inp(x_maskGT), model_ref(x_ref)
|
38 |
+
x_maskGT = ca_layer(x_maskGT, x_ref)
|
39 |
+
if i < self.layers - 1:
|
40 |
+
out.append(x_maskGT)
|
41 |
+
else:
|
42 |
+
out.append(torch.cat([x_maskGT, x_ref], dim=1)) # concat ref features !
|
43 |
+
return out
|
44 |
+
|
45 |
+
|
46 |
+
class Decoder(nn.Module):
|
47 |
+
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
48 |
+
super(Decoder, self).__init__()
|
49 |
+
self.layers = layers
|
50 |
+
for i in range(layers)[::-1]:
|
51 |
+
if i == layers-1:
|
52 |
+
in_channels = ngf*(2**(i+1)) * 2
|
53 |
+
else:
|
54 |
+
in_channels = min(ngf*(2**(i+1)), img_f)
|
55 |
+
out_channels = min(ngf*(2**i), img_f)
|
56 |
+
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
57 |
+
res = FFCADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
|
58 |
+
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
|
59 |
+
|
60 |
+
setattr(self, 'up' + str(i), up)
|
61 |
+
setattr(self, 'res' + str(i), res)
|
62 |
+
setattr(self, 'jump' + str(i), jump)
|
63 |
+
|
64 |
+
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'sigmoid')
|
65 |
+
self.output_nc = out_channels
|
66 |
+
|
67 |
+
def forward(self, x, z):
|
68 |
+
out = x.pop()
|
69 |
+
for i in range(self.layers)[::-1]:
|
70 |
+
res_model = getattr(self, 'res' + str(i))
|
71 |
+
up_model = getattr(self, 'up' + str(i))
|
72 |
+
jump_model = getattr(self, 'jump' + str(i))
|
73 |
+
out = res_model(out, z)
|
74 |
+
out = up_model(out)
|
75 |
+
out = jump_model(x.pop()) + out
|
76 |
+
out_image = self.final(out)
|
77 |
+
return out_image
|
78 |
+
|
79 |
+
|
80 |
+
class LNet(nn.Module):
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
image_nc=3,
|
84 |
+
descriptor_nc=512,
|
85 |
+
layer=3,
|
86 |
+
base_nc=64,
|
87 |
+
max_nc=512,
|
88 |
+
num_res_blocks=9,
|
89 |
+
use_spect=True,
|
90 |
+
encoder=Visual_Encoder,
|
91 |
+
decoder=Decoder
|
92 |
+
):
|
93 |
+
super(LNet, self).__init__()
|
94 |
+
|
95 |
+
nonlinearity = nn.LeakyReLU(0.1)
|
96 |
+
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
97 |
+
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
98 |
+
self.descriptor_nc = descriptor_nc
|
99 |
+
|
100 |
+
self.encoder = encoder(image_nc, base_nc, max_nc, layer, **kwargs)
|
101 |
+
self.decoder = decoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
|
102 |
+
self.audio_encoder = nn.Sequential(
|
103 |
+
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
104 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
105 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
106 |
+
|
107 |
+
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
108 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
109 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
110 |
+
|
111 |
+
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
112 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
113 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
114 |
+
|
115 |
+
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
116 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
117 |
+
|
118 |
+
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
119 |
+
Conv2d(512, descriptor_nc, kernel_size=1, stride=1, padding=0),
|
120 |
+
)
|
121 |
+
|
122 |
+
def forward(self, audio_sequences, face_sequences):
|
123 |
+
B = audio_sequences.size(0)
|
124 |
+
input_dim_size = len(face_sequences.size())
|
125 |
+
if input_dim_size > 4:
|
126 |
+
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
127 |
+
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
|
128 |
+
cropped, ref = torch.split(face_sequences, 3, dim=1)
|
129 |
+
|
130 |
+
vis_feat = self.encoder(cropped, ref)
|
131 |
+
audio_feat = self.audio_encoder(audio_sequences)
|
132 |
+
_outputs = self.decoder(vis_feat, audio_feat)
|
133 |
+
|
134 |
+
if input_dim_size > 4:
|
135 |
+
_outputs = torch.split(_outputs, B, dim=0)
|
136 |
+
outputs = torch.stack(_outputs, dim=2)
|
137 |
+
else:
|
138 |
+
outputs = _outputs
|
139 |
+
return outputs
|
videoretalking/models/__init__.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from models.DNet import DNet
|
3 |
+
from models.LNet import LNet
|
4 |
+
from models.ENet import ENet
|
5 |
+
|
6 |
+
|
7 |
+
def _load(checkpoint_path):
|
8 |
+
map_location=None if torch.cuda.is_available() else torch.device('cpu')
|
9 |
+
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
10 |
+
return checkpoint
|
11 |
+
|
12 |
+
def load_checkpoint(path, model):
|
13 |
+
print("Load checkpoint from: {}".format(path))
|
14 |
+
checkpoint = _load(path)
|
15 |
+
s = checkpoint["state_dict"] if 'arcface' not in path else checkpoint
|
16 |
+
new_s = {}
|
17 |
+
for k, v in s.items():
|
18 |
+
if 'low_res' in k:
|
19 |
+
continue
|
20 |
+
else:
|
21 |
+
new_s[k.replace('module.', '')] = v
|
22 |
+
model.load_state_dict(new_s, strict=False)
|
23 |
+
return model
|
24 |
+
|
25 |
+
def load_network(LNet_path,ENet_path):
|
26 |
+
L_net = LNet()
|
27 |
+
L_net = load_checkpoint(LNet_path, L_net)
|
28 |
+
E_net = ENet(lnet=L_net)
|
29 |
+
model = load_checkpoint(ENet_path, E_net)
|
30 |
+
return model.eval()
|
31 |
+
|
32 |
+
def load_DNet(DNet_path):
|
33 |
+
D_Net = DNet()
|
34 |
+
print("Load checkpoint from: {}".format(DNet_path))
|
35 |
+
checkpoint = torch.load(DNet_path, map_location=lambda storage, loc: storage)
|
36 |
+
D_Net.load_state_dict(checkpoint['net_G_ema'], strict=False)
|
37 |
+
return D_Net.eval()
|
videoretalking/models/base_blocks.py
ADDED
@@ -0,0 +1,554 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch.nn.modules.batchnorm import BatchNorm2d
|
6 |
+
from torch.nn.utils.spectral_norm import spectral_norm as SpectralNorm
|
7 |
+
|
8 |
+
from models.ffc import FFC
|
9 |
+
from basicsr.archs.arch_util import default_init_weights
|
10 |
+
|
11 |
+
|
12 |
+
class Conv2d(nn.Module):
|
13 |
+
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
|
14 |
+
super().__init__(*args, **kwargs)
|
15 |
+
self.conv_block = nn.Sequential(
|
16 |
+
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
17 |
+
nn.BatchNorm2d(cout)
|
18 |
+
)
|
19 |
+
self.act = nn.ReLU()
|
20 |
+
self.residual = residual
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
out = self.conv_block(x)
|
24 |
+
if self.residual:
|
25 |
+
out += x
|
26 |
+
return self.act(out)
|
27 |
+
|
28 |
+
|
29 |
+
class ResBlock(nn.Module):
|
30 |
+
def __init__(self, in_channels, out_channels, mode='down'):
|
31 |
+
super(ResBlock, self).__init__()
|
32 |
+
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
|
33 |
+
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
|
34 |
+
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
35 |
+
if mode == 'down':
|
36 |
+
self.scale_factor = 0.5
|
37 |
+
elif mode == 'up':
|
38 |
+
self.scale_factor = 2
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
|
42 |
+
# upsample/downsample
|
43 |
+
out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
44 |
+
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
|
45 |
+
# skip
|
46 |
+
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
47 |
+
skip = self.skip(x)
|
48 |
+
out = out + skip
|
49 |
+
return out
|
50 |
+
|
51 |
+
|
52 |
+
class LayerNorm2d(nn.Module):
|
53 |
+
def __init__(self, n_out, affine=True):
|
54 |
+
super(LayerNorm2d, self).__init__()
|
55 |
+
self.n_out = n_out
|
56 |
+
self.affine = affine
|
57 |
+
|
58 |
+
if self.affine:
|
59 |
+
self.weight = nn.Parameter(torch.ones(n_out, 1, 1))
|
60 |
+
self.bias = nn.Parameter(torch.zeros(n_out, 1, 1))
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
normalized_shape = x.size()[1:]
|
64 |
+
if self.affine:
|
65 |
+
return F.layer_norm(x, normalized_shape, \
|
66 |
+
self.weight.expand(normalized_shape),
|
67 |
+
self.bias.expand(normalized_shape))
|
68 |
+
else:
|
69 |
+
return F.layer_norm(x, normalized_shape)
|
70 |
+
|
71 |
+
|
72 |
+
def spectral_norm(module, use_spect=True):
|
73 |
+
if use_spect:
|
74 |
+
return SpectralNorm(module)
|
75 |
+
else:
|
76 |
+
return module
|
77 |
+
|
78 |
+
|
79 |
+
class FirstBlock2d(nn.Module):
|
80 |
+
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
81 |
+
super(FirstBlock2d, self).__init__()
|
82 |
+
kwargs = {'kernel_size': 7, 'stride': 1, 'padding': 3}
|
83 |
+
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
84 |
+
|
85 |
+
if type(norm_layer) == type(None):
|
86 |
+
self.model = nn.Sequential(conv, nonlinearity)
|
87 |
+
else:
|
88 |
+
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
out = self.model(x)
|
92 |
+
return out
|
93 |
+
|
94 |
+
|
95 |
+
class DownBlock2d(nn.Module):
|
96 |
+
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
97 |
+
super(DownBlock2d, self).__init__()
|
98 |
+
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
99 |
+
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
100 |
+
pool = nn.AvgPool2d(kernel_size=(2, 2))
|
101 |
+
|
102 |
+
if type(norm_layer) == type(None):
|
103 |
+
self.model = nn.Sequential(conv, nonlinearity, pool)
|
104 |
+
else:
|
105 |
+
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity, pool)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
out = self.model(x)
|
109 |
+
return out
|
110 |
+
|
111 |
+
|
112 |
+
class UpBlock2d(nn.Module):
|
113 |
+
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
114 |
+
super(UpBlock2d, self).__init__()
|
115 |
+
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
116 |
+
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
117 |
+
if type(norm_layer) == type(None):
|
118 |
+
self.model = nn.Sequential(conv, nonlinearity)
|
119 |
+
else:
|
120 |
+
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
|
121 |
+
|
122 |
+
def forward(self, x):
|
123 |
+
out = self.model(F.interpolate(x, scale_factor=2))
|
124 |
+
return out
|
125 |
+
|
126 |
+
|
127 |
+
class ADAIN(nn.Module):
|
128 |
+
def __init__(self, norm_nc, feature_nc):
|
129 |
+
super().__init__()
|
130 |
+
|
131 |
+
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
|
132 |
+
|
133 |
+
nhidden = 128
|
134 |
+
use_bias=True
|
135 |
+
|
136 |
+
self.mlp_shared = nn.Sequential(
|
137 |
+
nn.Linear(feature_nc, nhidden, bias=use_bias),
|
138 |
+
nn.ReLU()
|
139 |
+
)
|
140 |
+
self.mlp_gamma = nn.Linear(nhidden, norm_nc, bias=use_bias)
|
141 |
+
self.mlp_beta = nn.Linear(nhidden, norm_nc, bias=use_bias)
|
142 |
+
|
143 |
+
def forward(self, x, feature):
|
144 |
+
|
145 |
+
# Part 1. generate parameter-free normalized activations
|
146 |
+
normalized = self.param_free_norm(x)
|
147 |
+
# Part 2. produce scaling and bias conditioned on feature
|
148 |
+
feature = feature.view(feature.size(0), -1)
|
149 |
+
actv = self.mlp_shared(feature)
|
150 |
+
gamma = self.mlp_gamma(actv)
|
151 |
+
beta = self.mlp_beta(actv)
|
152 |
+
|
153 |
+
# apply scale and bias
|
154 |
+
gamma = gamma.view(*gamma.size()[:2], 1,1)
|
155 |
+
beta = beta.view(*beta.size()[:2], 1,1)
|
156 |
+
out = normalized * (1 + gamma) + beta
|
157 |
+
return out
|
158 |
+
|
159 |
+
|
160 |
+
class FineADAINResBlock2d(nn.Module):
|
161 |
+
"""
|
162 |
+
Define an Residual block for different types
|
163 |
+
"""
|
164 |
+
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
165 |
+
super(FineADAINResBlock2d, self).__init__()
|
166 |
+
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
167 |
+
self.conv1 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
168 |
+
self.conv2 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
169 |
+
self.norm1 = ADAIN(input_nc, feature_nc)
|
170 |
+
self.norm2 = ADAIN(input_nc, feature_nc)
|
171 |
+
self.actvn = nonlinearity
|
172 |
+
|
173 |
+
def forward(self, x, z):
|
174 |
+
dx = self.actvn(self.norm1(self.conv1(x), z))
|
175 |
+
dx = self.norm2(self.conv2(x), z)
|
176 |
+
out = dx + x
|
177 |
+
return out
|
178 |
+
|
179 |
+
|
180 |
+
class FineADAINResBlocks(nn.Module):
|
181 |
+
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
182 |
+
super(FineADAINResBlocks, self).__init__()
|
183 |
+
self.num_block = num_block
|
184 |
+
for i in range(num_block):
|
185 |
+
model = FineADAINResBlock2d(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
|
186 |
+
setattr(self, 'res'+str(i), model)
|
187 |
+
|
188 |
+
def forward(self, x, z):
|
189 |
+
for i in range(self.num_block):
|
190 |
+
model = getattr(self, 'res'+str(i))
|
191 |
+
x = model(x, z)
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class ADAINEncoderBlock(nn.Module):
|
196 |
+
def __init__(self, input_nc, output_nc, feature_nc, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
197 |
+
super(ADAINEncoderBlock, self).__init__()
|
198 |
+
kwargs_down = {'kernel_size': 4, 'stride': 2, 'padding': 1}
|
199 |
+
kwargs_fine = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
200 |
+
|
201 |
+
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_down), use_spect)
|
202 |
+
self.conv_1 = spectral_norm(nn.Conv2d(output_nc, output_nc, **kwargs_fine), use_spect)
|
203 |
+
|
204 |
+
|
205 |
+
self.norm_0 = ADAIN(input_nc, feature_nc)
|
206 |
+
self.norm_1 = ADAIN(output_nc, feature_nc)
|
207 |
+
self.actvn = nonlinearity
|
208 |
+
|
209 |
+
def forward(self, x, z):
|
210 |
+
x = self.conv_0(self.actvn(self.norm_0(x, z)))
|
211 |
+
x = self.conv_1(self.actvn(self.norm_1(x, z)))
|
212 |
+
return x
|
213 |
+
|
214 |
+
|
215 |
+
class ADAINDecoderBlock(nn.Module):
|
216 |
+
def __init__(self, input_nc, output_nc, hidden_nc, feature_nc, use_transpose=True, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
217 |
+
super(ADAINDecoderBlock, self).__init__()
|
218 |
+
# Attributes
|
219 |
+
self.actvn = nonlinearity
|
220 |
+
hidden_nc = min(input_nc, output_nc) if hidden_nc is None else hidden_nc
|
221 |
+
|
222 |
+
kwargs_fine = {'kernel_size':3, 'stride':1, 'padding':1}
|
223 |
+
if use_transpose:
|
224 |
+
kwargs_up = {'kernel_size':3, 'stride':2, 'padding':1, 'output_padding':1}
|
225 |
+
else:
|
226 |
+
kwargs_up = {'kernel_size':3, 'stride':1, 'padding':1}
|
227 |
+
|
228 |
+
# create conv layers
|
229 |
+
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, hidden_nc, **kwargs_fine), use_spect)
|
230 |
+
if use_transpose:
|
231 |
+
self.conv_1 = spectral_norm(nn.ConvTranspose2d(hidden_nc, output_nc, **kwargs_up), use_spect)
|
232 |
+
self.conv_s = spectral_norm(nn.ConvTranspose2d(input_nc, output_nc, **kwargs_up), use_spect)
|
233 |
+
else:
|
234 |
+
self.conv_1 = nn.Sequential(spectral_norm(nn.Conv2d(hidden_nc, output_nc, **kwargs_up), use_spect),
|
235 |
+
nn.Upsample(scale_factor=2))
|
236 |
+
self.conv_s = nn.Sequential(spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_up), use_spect),
|
237 |
+
nn.Upsample(scale_factor=2))
|
238 |
+
# define normalization layers
|
239 |
+
self.norm_0 = ADAIN(input_nc, feature_nc)
|
240 |
+
self.norm_1 = ADAIN(hidden_nc, feature_nc)
|
241 |
+
self.norm_s = ADAIN(input_nc, feature_nc)
|
242 |
+
|
243 |
+
def forward(self, x, z):
|
244 |
+
x_s = self.shortcut(x, z)
|
245 |
+
dx = self.conv_0(self.actvn(self.norm_0(x, z)))
|
246 |
+
dx = self.conv_1(self.actvn(self.norm_1(dx, z)))
|
247 |
+
out = x_s + dx
|
248 |
+
return out
|
249 |
+
|
250 |
+
def shortcut(self, x, z):
|
251 |
+
x_s = self.conv_s(self.actvn(self.norm_s(x, z)))
|
252 |
+
return x_s
|
253 |
+
|
254 |
+
|
255 |
+
class FineEncoder(nn.Module):
|
256 |
+
"""docstring for Encoder"""
|
257 |
+
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
258 |
+
super(FineEncoder, self).__init__()
|
259 |
+
self.layers = layers
|
260 |
+
self.first = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
261 |
+
for i in range(layers):
|
262 |
+
in_channels = min(ngf*(2**i), img_f)
|
263 |
+
out_channels = min(ngf*(2**(i+1)), img_f)
|
264 |
+
model = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
265 |
+
setattr(self, 'down' + str(i), model)
|
266 |
+
self.output_nc = out_channels
|
267 |
+
|
268 |
+
def forward(self, x):
|
269 |
+
x = self.first(x)
|
270 |
+
out=[x]
|
271 |
+
for i in range(self.layers):
|
272 |
+
model = getattr(self, 'down'+str(i))
|
273 |
+
x = model(x)
|
274 |
+
out.append(x)
|
275 |
+
return out
|
276 |
+
|
277 |
+
|
278 |
+
class FineDecoder(nn.Module):
|
279 |
+
"""docstring for FineDecoder"""
|
280 |
+
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
281 |
+
super(FineDecoder, self).__init__()
|
282 |
+
self.layers = layers
|
283 |
+
for i in range(layers)[::-1]:
|
284 |
+
in_channels = min(ngf*(2**(i+1)), img_f)
|
285 |
+
out_channels = min(ngf*(2**i), img_f)
|
286 |
+
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
287 |
+
res = FineADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
|
288 |
+
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
|
289 |
+
setattr(self, 'up' + str(i), up)
|
290 |
+
setattr(self, 'res' + str(i), res)
|
291 |
+
setattr(self, 'jump' + str(i), jump)
|
292 |
+
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'tanh')
|
293 |
+
self.output_nc = out_channels
|
294 |
+
|
295 |
+
def forward(self, x, z):
|
296 |
+
out = x.pop()
|
297 |
+
for i in range(self.layers)[::-1]:
|
298 |
+
res_model = getattr(self, 'res' + str(i))
|
299 |
+
up_model = getattr(self, 'up' + str(i))
|
300 |
+
jump_model = getattr(self, 'jump' + str(i))
|
301 |
+
out = res_model(out, z)
|
302 |
+
out = up_model(out)
|
303 |
+
out = jump_model(x.pop()) + out
|
304 |
+
out_image = self.final(out)
|
305 |
+
return out_image
|
306 |
+
|
307 |
+
|
308 |
+
class ADAINEncoder(nn.Module):
|
309 |
+
def __init__(self, image_nc, pose_nc, ngf, img_f, layers, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
310 |
+
super(ADAINEncoder, self).__init__()
|
311 |
+
self.layers = layers
|
312 |
+
self.input_layer = nn.Conv2d(image_nc, ngf, kernel_size=7, stride=1, padding=3)
|
313 |
+
for i in range(layers):
|
314 |
+
in_channels = min(ngf * (2**i), img_f)
|
315 |
+
out_channels = min(ngf *(2**(i+1)), img_f)
|
316 |
+
model = ADAINEncoderBlock(in_channels, out_channels, pose_nc, nonlinearity, use_spect)
|
317 |
+
setattr(self, 'encoder' + str(i), model)
|
318 |
+
self.output_nc = out_channels
|
319 |
+
|
320 |
+
def forward(self, x, z):
|
321 |
+
out = self.input_layer(x)
|
322 |
+
out_list = [out]
|
323 |
+
for i in range(self.layers):
|
324 |
+
model = getattr(self, 'encoder' + str(i))
|
325 |
+
out = model(out, z)
|
326 |
+
out_list.append(out)
|
327 |
+
return out_list
|
328 |
+
|
329 |
+
|
330 |
+
class ADAINDecoder(nn.Module):
|
331 |
+
"""docstring for ADAINDecoder"""
|
332 |
+
def __init__(self, pose_nc, ngf, img_f, encoder_layers, decoder_layers, skip_connect=True,
|
333 |
+
nonlinearity=nn.LeakyReLU(), use_spect=False):
|
334 |
+
|
335 |
+
super(ADAINDecoder, self).__init__()
|
336 |
+
self.encoder_layers = encoder_layers
|
337 |
+
self.decoder_layers = decoder_layers
|
338 |
+
self.skip_connect = skip_connect
|
339 |
+
use_transpose = True
|
340 |
+
for i in range(encoder_layers-decoder_layers, encoder_layers)[::-1]:
|
341 |
+
in_channels = min(ngf * (2**(i+1)), img_f)
|
342 |
+
in_channels = in_channels*2 if i != (encoder_layers-1) and self.skip_connect else in_channels
|
343 |
+
out_channels = min(ngf * (2**i), img_f)
|
344 |
+
model = ADAINDecoderBlock(in_channels, out_channels, out_channels, pose_nc, use_transpose, nonlinearity, use_spect)
|
345 |
+
setattr(self, 'decoder' + str(i), model)
|
346 |
+
self.output_nc = out_channels*2 if self.skip_connect else out_channels
|
347 |
+
|
348 |
+
def forward(self, x, z):
|
349 |
+
out = x.pop() if self.skip_connect else x
|
350 |
+
for i in range(self.encoder_layers-self.decoder_layers, self.encoder_layers)[::-1]:
|
351 |
+
model = getattr(self, 'decoder' + str(i))
|
352 |
+
out = model(out, z)
|
353 |
+
out = torch.cat([out, x.pop()], 1) if self.skip_connect else out
|
354 |
+
return out
|
355 |
+
|
356 |
+
|
357 |
+
class ADAINHourglass(nn.Module):
|
358 |
+
def __init__(self, image_nc, pose_nc, ngf, img_f, encoder_layers, decoder_layers, nonlinearity, use_spect):
|
359 |
+
super(ADAINHourglass, self).__init__()
|
360 |
+
self.encoder = ADAINEncoder(image_nc, pose_nc, ngf, img_f, encoder_layers, nonlinearity, use_spect)
|
361 |
+
self.decoder = ADAINDecoder(pose_nc, ngf, img_f, encoder_layers, decoder_layers, True, nonlinearity, use_spect)
|
362 |
+
self.output_nc = self.decoder.output_nc
|
363 |
+
|
364 |
+
def forward(self, x, z):
|
365 |
+
return self.decoder(self.encoder(x, z), z)
|
366 |
+
|
367 |
+
|
368 |
+
class FineADAINLama(nn.Module):
|
369 |
+
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
370 |
+
super(FineADAINLama, self).__init__()
|
371 |
+
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
372 |
+
self.actvn = nonlinearity
|
373 |
+
ratio_gin = 0.75
|
374 |
+
ratio_gout = 0.75
|
375 |
+
self.ffc = FFC(input_nc, input_nc, 3,
|
376 |
+
ratio_gin, ratio_gout, 1, 1, 1,
|
377 |
+
1, False, False, padding_type='reflect')
|
378 |
+
global_channels = int(input_nc * ratio_gout)
|
379 |
+
self.bn_l = ADAIN(input_nc - global_channels, feature_nc)
|
380 |
+
self.bn_g = ADAIN(global_channels, feature_nc)
|
381 |
+
|
382 |
+
def forward(self, x, z):
|
383 |
+
x_l, x_g = self.ffc(x)
|
384 |
+
x_l = self.actvn(self.bn_l(x_l,z))
|
385 |
+
x_g = self.actvn(self.bn_g(x_g,z))
|
386 |
+
return x_l, x_g
|
387 |
+
|
388 |
+
|
389 |
+
class FFCResnetBlock(nn.Module):
|
390 |
+
def __init__(self, dim, feature_dim, padding_type='reflect', norm_layer=BatchNorm2d, activation_layer=nn.ReLU, dilation=1,
|
391 |
+
spatial_transform_kwargs=None, inline=False, **conv_kwargs):
|
392 |
+
super().__init__()
|
393 |
+
self.conv1 = FineADAINLama(dim, feature_dim, **conv_kwargs)
|
394 |
+
self.conv2 = FineADAINLama(dim, feature_dim, **conv_kwargs)
|
395 |
+
self.inline = True
|
396 |
+
|
397 |
+
def forward(self, x, z):
|
398 |
+
if self.inline:
|
399 |
+
x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
|
400 |
+
else:
|
401 |
+
x_l, x_g = x if type(x) is tuple else (x, 0)
|
402 |
+
|
403 |
+
id_l, id_g = x_l, x_g
|
404 |
+
x_l, x_g = self.conv1((x_l, x_g), z)
|
405 |
+
x_l, x_g = self.conv2((x_l, x_g), z)
|
406 |
+
|
407 |
+
x_l, x_g = id_l + x_l, id_g + x_g
|
408 |
+
out = x_l, x_g
|
409 |
+
if self.inline:
|
410 |
+
out = torch.cat(out, dim=1)
|
411 |
+
return out
|
412 |
+
|
413 |
+
|
414 |
+
class FFCADAINResBlocks(nn.Module):
|
415 |
+
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
416 |
+
super(FFCADAINResBlocks, self).__init__()
|
417 |
+
self.num_block = num_block
|
418 |
+
for i in range(num_block):
|
419 |
+
model = FFCResnetBlock(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
|
420 |
+
setattr(self, 'res'+str(i), model)
|
421 |
+
|
422 |
+
def forward(self, x, z):
|
423 |
+
for i in range(self.num_block):
|
424 |
+
model = getattr(self, 'res'+str(i))
|
425 |
+
x = model(x, z)
|
426 |
+
return x
|
427 |
+
|
428 |
+
|
429 |
+
class Jump(nn.Module):
|
430 |
+
def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
431 |
+
super(Jump, self).__init__()
|
432 |
+
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
433 |
+
conv = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
434 |
+
if type(norm_layer) == type(None):
|
435 |
+
self.model = nn.Sequential(conv, nonlinearity)
|
436 |
+
else:
|
437 |
+
self.model = nn.Sequential(conv, norm_layer(input_nc), nonlinearity)
|
438 |
+
|
439 |
+
def forward(self, x):
|
440 |
+
out = self.model(x)
|
441 |
+
return out
|
442 |
+
|
443 |
+
|
444 |
+
class FinalBlock2d(nn.Module):
|
445 |
+
def __init__(self, input_nc, output_nc, use_spect=False, tanh_or_sigmoid='tanh'):
|
446 |
+
super(FinalBlock2d, self).__init__()
|
447 |
+
kwargs = {'kernel_size': 7, 'stride': 1, 'padding':3}
|
448 |
+
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
449 |
+
if tanh_or_sigmoid == 'sigmoid':
|
450 |
+
out_nonlinearity = nn.Sigmoid()
|
451 |
+
else:
|
452 |
+
out_nonlinearity = nn.Tanh()
|
453 |
+
self.model = nn.Sequential(conv, out_nonlinearity)
|
454 |
+
|
455 |
+
def forward(self, x):
|
456 |
+
out = self.model(x)
|
457 |
+
return out
|
458 |
+
|
459 |
+
|
460 |
+
class ModulatedConv2d(nn.Module):
|
461 |
+
def __init__(self,
|
462 |
+
in_channels,
|
463 |
+
out_channels,
|
464 |
+
kernel_size,
|
465 |
+
num_style_feat,
|
466 |
+
demodulate=True,
|
467 |
+
sample_mode=None,
|
468 |
+
eps=1e-8):
|
469 |
+
super(ModulatedConv2d, self).__init__()
|
470 |
+
self.in_channels = in_channels
|
471 |
+
self.out_channels = out_channels
|
472 |
+
self.kernel_size = kernel_size
|
473 |
+
self.demodulate = demodulate
|
474 |
+
self.sample_mode = sample_mode
|
475 |
+
self.eps = eps
|
476 |
+
|
477 |
+
# modulation inside each modulated conv
|
478 |
+
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
|
479 |
+
# initialization
|
480 |
+
default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
|
481 |
+
|
482 |
+
self.weight = nn.Parameter(
|
483 |
+
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
|
484 |
+
math.sqrt(in_channels * kernel_size**2))
|
485 |
+
self.padding = kernel_size // 2
|
486 |
+
|
487 |
+
def forward(self, x, style):
|
488 |
+
b, c, h, w = x.shape
|
489 |
+
style = self.modulation(style).view(b, 1, c, 1, 1)
|
490 |
+
weight = self.weight * style
|
491 |
+
|
492 |
+
if self.demodulate:
|
493 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
494 |
+
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
495 |
+
|
496 |
+
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
|
497 |
+
|
498 |
+
# upsample or downsample if necessary
|
499 |
+
if self.sample_mode == 'upsample':
|
500 |
+
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
501 |
+
elif self.sample_mode == 'downsample':
|
502 |
+
x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
|
503 |
+
|
504 |
+
b, c, h, w = x.shape
|
505 |
+
x = x.view(1, b * c, h, w)
|
506 |
+
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
507 |
+
out = out.view(b, self.out_channels, *out.shape[2:4])
|
508 |
+
return out
|
509 |
+
|
510 |
+
def __repr__(self):
|
511 |
+
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
|
512 |
+
f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
|
513 |
+
|
514 |
+
|
515 |
+
class StyleConv(nn.Module):
|
516 |
+
def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
|
517 |
+
super(StyleConv, self).__init__()
|
518 |
+
self.modulated_conv = ModulatedConv2d(
|
519 |
+
in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
|
520 |
+
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
|
521 |
+
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
|
522 |
+
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
523 |
+
|
524 |
+
def forward(self, x, style, noise=None):
|
525 |
+
# modulate
|
526 |
+
out = self.modulated_conv(x, style) * 2**0.5 # for conversion
|
527 |
+
# noise injection
|
528 |
+
if noise is None:
|
529 |
+
b, _, h, w = out.shape
|
530 |
+
noise = out.new_empty(b, 1, h, w).normal_()
|
531 |
+
out = out + self.weight * noise
|
532 |
+
# add bias
|
533 |
+
out = out + self.bias
|
534 |
+
# activation
|
535 |
+
out = self.activate(out)
|
536 |
+
return out
|
537 |
+
|
538 |
+
|
539 |
+
class ToRGB(nn.Module):
|
540 |
+
def __init__(self, in_channels, num_style_feat, upsample=True):
|
541 |
+
super(ToRGB, self).__init__()
|
542 |
+
self.upsample = upsample
|
543 |
+
self.modulated_conv = ModulatedConv2d(
|
544 |
+
in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
|
545 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
546 |
+
|
547 |
+
def forward(self, x, style, skip=None):
|
548 |
+
out = self.modulated_conv(x, style)
|
549 |
+
out = out + self.bias
|
550 |
+
if skip is not None:
|
551 |
+
if self.upsample:
|
552 |
+
skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
|
553 |
+
out = out + skip
|
554 |
+
return out
|
videoretalking/models/ffc.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fast Fourier Convolution NeurIPS 2020
|
2 |
+
# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py
|
3 |
+
# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
# from models.modules.squeeze_excitation import SELayer
|
9 |
+
import torch.fft
|
10 |
+
|
11 |
+
class SELayer(nn.Module):
|
12 |
+
def __init__(self, channel, reduction=16):
|
13 |
+
super(SELayer, self).__init__()
|
14 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
15 |
+
self.fc = nn.Sequential(
|
16 |
+
nn.Linear(channel, channel // reduction, bias=False),
|
17 |
+
nn.ReLU(inplace=True),
|
18 |
+
nn.Linear(channel // reduction, channel, bias=False),
|
19 |
+
nn.Sigmoid()
|
20 |
+
)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
b, c, _, _ = x.size()
|
24 |
+
y = self.avg_pool(x).view(b, c)
|
25 |
+
y = self.fc(y).view(b, c, 1, 1)
|
26 |
+
res = x * y.expand_as(x)
|
27 |
+
return res
|
28 |
+
|
29 |
+
|
30 |
+
class FFCSE_block(nn.Module):
|
31 |
+
def __init__(self, channels, ratio_g):
|
32 |
+
super(FFCSE_block, self).__init__()
|
33 |
+
in_cg = int(channels * ratio_g)
|
34 |
+
in_cl = channels - in_cg
|
35 |
+
r = 16
|
36 |
+
|
37 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
38 |
+
self.conv1 = nn.Conv2d(channels, channels // r,
|
39 |
+
kernel_size=1, bias=True)
|
40 |
+
self.relu1 = nn.ReLU(inplace=True)
|
41 |
+
self.conv_a2l = None if in_cl == 0 else nn.Conv2d(
|
42 |
+
channels // r, in_cl, kernel_size=1, bias=True)
|
43 |
+
self.conv_a2g = None if in_cg == 0 else nn.Conv2d(
|
44 |
+
channels // r, in_cg, kernel_size=1, bias=True)
|
45 |
+
self.sigmoid = nn.Sigmoid()
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
x = x if type(x) is tuple else (x, 0)
|
49 |
+
id_l, id_g = x
|
50 |
+
|
51 |
+
x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1)
|
52 |
+
x = self.avgpool(x)
|
53 |
+
x = self.relu1(self.conv1(x))
|
54 |
+
|
55 |
+
x_l = 0 if self.conv_a2l is None else id_l * \
|
56 |
+
self.sigmoid(self.conv_a2l(x))
|
57 |
+
x_g = 0 if self.conv_a2g is None else id_g * \
|
58 |
+
self.sigmoid(self.conv_a2g(x))
|
59 |
+
return x_l, x_g
|
60 |
+
|
61 |
+
|
62 |
+
class FourierUnit(nn.Module):
|
63 |
+
|
64 |
+
def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear',
|
65 |
+
spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'):
|
66 |
+
# bn_layer not used
|
67 |
+
super(FourierUnit, self).__init__()
|
68 |
+
self.groups = groups
|
69 |
+
|
70 |
+
self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
|
71 |
+
out_channels=out_channels * 2,
|
72 |
+
kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False)
|
73 |
+
self.bn = torch.nn.BatchNorm2d(out_channels * 2)
|
74 |
+
self.relu = torch.nn.ReLU(inplace=True)
|
75 |
+
|
76 |
+
# squeeze and excitation block
|
77 |
+
self.use_se = use_se
|
78 |
+
if use_se:
|
79 |
+
if se_kwargs is None:
|
80 |
+
se_kwargs = {}
|
81 |
+
self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
|
82 |
+
|
83 |
+
self.spatial_scale_factor = spatial_scale_factor
|
84 |
+
self.spatial_scale_mode = spatial_scale_mode
|
85 |
+
self.spectral_pos_encoding = spectral_pos_encoding
|
86 |
+
self.ffc3d = ffc3d
|
87 |
+
self.fft_norm = fft_norm
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
batch = x.shape[0]
|
91 |
+
|
92 |
+
if self.spatial_scale_factor is not None:
|
93 |
+
orig_size = x.shape[-2:]
|
94 |
+
x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False)
|
95 |
+
|
96 |
+
r_size = x.size()
|
97 |
+
# (batch, c, h, w/2+1, 2)
|
98 |
+
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
|
99 |
+
ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
|
100 |
+
ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
|
101 |
+
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
|
102 |
+
ffted = ffted.view((batch, -1,) + ffted.size()[3:])
|
103 |
+
|
104 |
+
if self.spectral_pos_encoding:
|
105 |
+
height, width = ffted.shape[-2:]
|
106 |
+
coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted)
|
107 |
+
coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted)
|
108 |
+
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
|
109 |
+
|
110 |
+
if self.use_se:
|
111 |
+
ffted = self.se(ffted)
|
112 |
+
|
113 |
+
ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
|
114 |
+
ffted = self.relu(self.bn(ffted))
|
115 |
+
|
116 |
+
ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
|
117 |
+
0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2)
|
118 |
+
ffted = torch.complex(ffted[..., 0], ffted[..., 1])
|
119 |
+
|
120 |
+
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
|
121 |
+
output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm)
|
122 |
+
|
123 |
+
if self.spatial_scale_factor is not None:
|
124 |
+
output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False)
|
125 |
+
|
126 |
+
return output
|
127 |
+
|
128 |
+
|
129 |
+
class SpectralTransform(nn.Module):
|
130 |
+
def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs):
|
131 |
+
# bn_layer not used
|
132 |
+
super(SpectralTransform, self).__init__()
|
133 |
+
self.enable_lfu = enable_lfu
|
134 |
+
if stride == 2:
|
135 |
+
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
|
136 |
+
else:
|
137 |
+
self.downsample = nn.Identity()
|
138 |
+
|
139 |
+
self.stride = stride
|
140 |
+
self.conv1 = nn.Sequential(
|
141 |
+
nn.Conv2d(in_channels, out_channels //
|
142 |
+
2, kernel_size=1, groups=groups, bias=False),
|
143 |
+
nn.BatchNorm2d(out_channels // 2),
|
144 |
+
nn.ReLU(inplace=True)
|
145 |
+
)
|
146 |
+
self.fu = FourierUnit(
|
147 |
+
out_channels // 2, out_channels // 2, groups, **fu_kwargs)
|
148 |
+
if self.enable_lfu:
|
149 |
+
self.lfu = FourierUnit(
|
150 |
+
out_channels // 2, out_channels // 2, groups)
|
151 |
+
self.conv2 = torch.nn.Conv2d(
|
152 |
+
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)
|
153 |
+
|
154 |
+
def forward(self, x):
|
155 |
+
x = self.downsample(x)
|
156 |
+
x = self.conv1(x)
|
157 |
+
output = self.fu(x)
|
158 |
+
|
159 |
+
if self.enable_lfu:
|
160 |
+
n, c, h, w = x.shape
|
161 |
+
split_no = 2
|
162 |
+
split_s = h // split_no
|
163 |
+
xs = torch.cat(torch.split(
|
164 |
+
x[:, :c // 4], split_s, dim=-2), dim=1).contiguous()
|
165 |
+
xs = torch.cat(torch.split(xs, split_s, dim=-1),
|
166 |
+
dim=1).contiguous()
|
167 |
+
xs = self.lfu(xs)
|
168 |
+
xs = xs.repeat(1, 1, split_no, split_no).contiguous()
|
169 |
+
else:
|
170 |
+
xs = 0
|
171 |
+
|
172 |
+
output = self.conv2(x + output + xs)
|
173 |
+
return output
|
174 |
+
|
175 |
+
|
176 |
+
class FFC(nn.Module):
|
177 |
+
|
178 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
179 |
+
ratio_gin, ratio_gout, stride=1, padding=0,
|
180 |
+
dilation=1, groups=1, bias=False, enable_lfu=True,
|
181 |
+
padding_type='reflect', gated=False, **spectral_kwargs):
|
182 |
+
super(FFC, self).__init__()
|
183 |
+
|
184 |
+
assert stride == 1 or stride == 2, "Stride should be 1 or 2."
|
185 |
+
self.stride = stride
|
186 |
+
|
187 |
+
in_cg = int(in_channels * ratio_gin)
|
188 |
+
in_cl = in_channels - in_cg
|
189 |
+
out_cg = int(out_channels * ratio_gout)
|
190 |
+
out_cl = out_channels - out_cg
|
191 |
+
|
192 |
+
self.ratio_gin = ratio_gin
|
193 |
+
self.ratio_gout = ratio_gout
|
194 |
+
self.global_in_num = in_cg
|
195 |
+
|
196 |
+
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
|
197 |
+
self.convl2l = module(in_cl, out_cl, kernel_size,
|
198 |
+
stride, padding, dilation, groups, bias, padding_mode=padding_type)
|
199 |
+
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
|
200 |
+
self.convl2g = module(in_cl, out_cg, kernel_size,
|
201 |
+
stride, padding, dilation, groups, bias, padding_mode=padding_type)
|
202 |
+
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
|
203 |
+
self.convg2l = module(in_cg, out_cl, kernel_size,
|
204 |
+
stride, padding, dilation, groups, bias, padding_mode=padding_type)
|
205 |
+
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
|
206 |
+
self.convg2g = module(
|
207 |
+
in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs)
|
208 |
+
|
209 |
+
self.gated = gated
|
210 |
+
module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
|
211 |
+
self.gate = module(in_channels, 2, 1)
|
212 |
+
|
213 |
+
def forward(self, x):
|
214 |
+
x_l, x_g = x if type(x) is tuple else (x, 0)
|
215 |
+
out_xl, out_xg = 0, 0
|
216 |
+
|
217 |
+
if self.gated:
|
218 |
+
total_input_parts = [x_l]
|
219 |
+
if torch.is_tensor(x_g):
|
220 |
+
total_input_parts.append(x_g)
|
221 |
+
total_input = torch.cat(total_input_parts, dim=1)
|
222 |
+
|
223 |
+
gates = torch.sigmoid(self.gate(total_input))
|
224 |
+
g2l_gate, l2g_gate = gates.chunk(2, dim=1)
|
225 |
+
else:
|
226 |
+
g2l_gate, l2g_gate = 1, 1
|
227 |
+
|
228 |
+
if self.ratio_gout != 1:
|
229 |
+
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
|
230 |
+
if self.ratio_gout != 0:
|
231 |
+
out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
|
232 |
+
|
233 |
+
return out_xl, out_xg
|
videoretalking/models/transformer.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
from einops import rearrange
|
5 |
+
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
class GELU(nn.Module):
|
12 |
+
def __init__(self):
|
13 |
+
super(GELU, self).__init__()
|
14 |
+
def forward(self, x):
|
15 |
+
return 0.5*x*(1+F.tanh(np.sqrt(2/np.pi)*(x+0.044715*torch.pow(x,3))))
|
16 |
+
|
17 |
+
# helpers
|
18 |
+
|
19 |
+
def pair(t):
|
20 |
+
return t if isinstance(t, tuple) else (t, t)
|
21 |
+
|
22 |
+
# classes
|
23 |
+
|
24 |
+
class PreNorm(nn.Module):
|
25 |
+
def __init__(self, dim, fn):
|
26 |
+
super().__init__()
|
27 |
+
self.norm = nn.LayerNorm(dim)
|
28 |
+
self.fn = fn
|
29 |
+
def forward(self, x, **kwargs):
|
30 |
+
return self.fn(self.norm(x), **kwargs)
|
31 |
+
|
32 |
+
class DualPreNorm(nn.Module):
|
33 |
+
def __init__(self, dim, fn):
|
34 |
+
super().__init__()
|
35 |
+
self.normx = nn.LayerNorm(dim)
|
36 |
+
self.normy = nn.LayerNorm(dim)
|
37 |
+
self.fn = fn
|
38 |
+
def forward(self, x, y, **kwargs):
|
39 |
+
return self.fn(self.normx(x), self.normy(y), **kwargs)
|
40 |
+
|
41 |
+
class FeedForward(nn.Module):
|
42 |
+
def __init__(self, dim, hidden_dim, dropout = 0.):
|
43 |
+
super().__init__()
|
44 |
+
self.net = nn.Sequential(
|
45 |
+
nn.Linear(dim, hidden_dim),
|
46 |
+
GELU(),
|
47 |
+
nn.Dropout(dropout),
|
48 |
+
nn.Linear(hidden_dim, dim),
|
49 |
+
nn.Dropout(dropout)
|
50 |
+
)
|
51 |
+
def forward(self, x):
|
52 |
+
return self.net(x)
|
53 |
+
|
54 |
+
class Attention(nn.Module):
|
55 |
+
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
56 |
+
super().__init__()
|
57 |
+
inner_dim = dim_head * heads
|
58 |
+
project_out = not (heads == 1 and dim_head == dim)
|
59 |
+
|
60 |
+
self.heads = heads
|
61 |
+
self.scale = dim_head ** -0.5
|
62 |
+
|
63 |
+
self.attend = nn.Softmax(dim = -1)
|
64 |
+
|
65 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
66 |
+
self.to_k = nn.Linear(dim, inner_dim, bias = False)
|
67 |
+
self.to_v = nn.Linear(dim, inner_dim, bias = False)
|
68 |
+
|
69 |
+
|
70 |
+
self.to_out = nn.Sequential(
|
71 |
+
nn.Linear(inner_dim, dim),
|
72 |
+
nn.Dropout(dropout)
|
73 |
+
) if project_out else nn.Identity()
|
74 |
+
|
75 |
+
def forward(self, x, y):
|
76 |
+
# qk = self.to_qk(x).chunk(2, dim = -1) #
|
77 |
+
q = rearrange(self.to_q(x), 'b n (h d) -> b h n d', h = self.heads) # q,k from the zero feature
|
78 |
+
k = rearrange(self.to_k(x), 'b n (h d) -> b h n d', h = self.heads) # v from the reference features
|
79 |
+
v = rearrange(self.to_v(y), 'b n (h d) -> b h n d', h = self.heads)
|
80 |
+
|
81 |
+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
82 |
+
|
83 |
+
attn = self.attend(dots)
|
84 |
+
|
85 |
+
out = torch.matmul(attn, v)
|
86 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
87 |
+
return self.to_out(out)
|
88 |
+
|
89 |
+
class Transformer(nn.Module):
|
90 |
+
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
|
91 |
+
super().__init__()
|
92 |
+
self.layers = nn.ModuleList([])
|
93 |
+
for _ in range(depth):
|
94 |
+
self.layers.append(nn.ModuleList([
|
95 |
+
DualPreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
|
96 |
+
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
97 |
+
]))
|
98 |
+
|
99 |
+
|
100 |
+
def forward(self, x, y): # x is the cropped, y is the foreign reference
|
101 |
+
bs,c,h,w = x.size()
|
102 |
+
|
103 |
+
# img to embedding
|
104 |
+
x = x.view(bs,c,-1).permute(0,2,1)
|
105 |
+
y = y.view(bs,c,-1).permute(0,2,1)
|
106 |
+
|
107 |
+
for attn, ff in self.layers:
|
108 |
+
x = attn(x, y) + x
|
109 |
+
x = ff(x) + x
|
110 |
+
|
111 |
+
x = x.view(bs,h,w,c).permute(0,3,1,2)
|
112 |
+
return x
|
113 |
+
|
114 |
+
class RETURNX(nn.Module):
|
115 |
+
def __init__(self,):
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
def forward(self, x, y): # x is the cropped, y is the foreign reference
|
119 |
+
return x
|